Procedimentos de backup e restauração para vários componentes Ultra-M - CPS

Contents

Introduction Informações de Apoio Abreviaturas Procedimento de backup Backup de OSPD Backup ESC Backup do CPS Procedimento de restauração Recuperação de OSPD Recuperação ESC Recuperação de CPS

Introduction

Este documento descreve as etapas necessárias para fazer backup e restaurar uma máquina virtual (VM) em uma configuração Ultra-M que hospeda as funções de rede virtual (VNFs) de chamadas CPS.

Informações de Apoio

O Ultra-M é uma solução de núcleo de pacotes móveis virtualizados, pré-embalada e validada, projetada para simplificar a implantação de VNFs. A solução Ultra-M consiste nos seguintes tipos de máquina virtual (VM):

- Controlador de serviços elásticos (ESC)
- Cisco Policy Suite (CPS)

A arquitetura de alto nível da Ultra-M e os componentes envolvidos são mostrados nesta imagem.

Note: A versão Ultra M 5.1.x é considerada para definir os procedimentos neste documento. Este documento destina-se ao pessoal da Cisco que conhece a plataforma Ultra-M da Cisco.

Abreviaturas

- VNF Função de rede virtual
- ESC Controlador de serviço
- elástico
- MOP Método de Procedimento
- OSD Discos de Armazenamento
- de Objeto
- HDD Unidade de disco rígido
- SSD Unidade de estado sólido
- VIM Virtual Infrastructure
- Manager
- VM Máquina virtual
- UUID Identificador de ID universal
- exclusivo

Procedimento de backup

Backup de OSPD

1. Verifique o status da pilha do OpenStack e a lista de nós.

[stack@director ~]\$ source stackrc
[stack@director ~]\$ openstack stack list --nested
[stack@director ~]\$ ironic node-list
[stack@director ~]\$ nova list

2. Verifique se todos os serviços em nuvem estão no status carregado, ativo e em execução no nó OSP-D.

[stack@director ~]\$ systemctl list-units "openstack*" "neutron*" "openvswitch*" LOAD UNIT ACTIVE SUB DESCRIPTION neutron-dhcp-agent.service loaded active running OpenStack Neutron DHCP Agent neutron-openvswitch-agent.service loaded active running OpenStack Neutron Open vSwitch Agent loaded active exited OpenStack Neutron Open vSwitch neutron-ovs-cleanup.service Cleanup Utility neutron-server.service loaded active running OpenStack Neutron Server openstack-aodh-evaluator.service loaded active running OpenStack Alarm evaluator service openstack-aodh-listener.service loaded active running OpenStack Alarm listener service loaded active running OpenStack Alarm notifier openstack-aodh-notifier.service service openstack-ceilometer-central.service loaded active running OpenStack ceilometer central agent openstack-ceilometer-collector.service loaded active running OpenStack ceilometer collection service openstack-ceilometer-notification.service loaded active running OpenStack ceilometer notification agent openstack-glance-api.service loaded active running OpenStack Image Service (codenamed Glance) API server loaded active running OpenStack Image Service (codeopenstack-glance-registry.service named Glance) Registry server openstack-heat-api-cfn.service loaded active running Openstack Heat CFN-compatible API Service openstack-heat-api.service loaded active running OpenStack Heat API Service openstack-heat-engine.service loaded active running Openstack Heat Engine Service openstack-ironic-api.service loaded active running OpenStack Ironic API service openstack-ironic-conductor.service loaded active running OpenStack Ironic Conductor service openstack-ironic-inspector-dnsmasq.service loaded active running PXE boot dnsmasq service for Ironic Inspector openstack-ironic-inspector.service loaded active running Hardware introspection service for OpenStack Ironic loaded active running Mistral API Server openstack-mistral-api.service openstack-mistral-engine.service loaded active running Mistral Engine Server openstack-mistral-executor.service loaded active running Mistral Executor Server openstack-nova-api.service loaded active running OpenStack Nova API Server openstack-nova-cert.service loaded active running OpenStack Nova Cert Server openstack-nova-compute.service loaded active running OpenStack Nova Compute Server loaded active running OpenStack Nova Conductor Server openstack-nova-conductor.service openstack-nova-scheduler.service loaded active running OpenStack Nova Scheduler Server openstack-swift-account-reaper.service loaded active running OpenStack Object Storage (swift) - Account Reaper openstack-swift-account.service loaded active running OpenStack Object Storage (swift) - Account Server openstack-swift-container-updater.service loaded active running OpenStack Object Storage (swift) - Container Updater

openstack-swift-container.service loaded active running OpenStack Object Storage (swift) - Container Server openstack-swift-object-updater.service loaded active running OpenStack Object Storage (swift) - Object Updater openstack-swift-object.service loaded active running OpenStack Object Storage (swift) - Object Server openstack-swift-proxy.service loaded active running OpenStack Object Storage (swift) - Proxy Server openstack-zagar.service loaded active running OpenStack Message Queuing Service (code-named Zaqar) Server openstack-zaqar@1.service loaded active running OpenStack Message Queuing Service (code-named Zagar) Server Instance 1 openvswitch.service loaded active exited Open vSwitch LOAD = Reflects whether the unit definition was properly loaded. ACTIVE = The high-level unit activation state, i.e. generalization of SUB.

SUB = The low-level unit activation state, values depend on unit type.

37 loaded units listed. Pass --all to see loaded but inactive units, too. To show all installed unit files use 'systemctl list-unit-files'.

3. Confirme se você tem espaço em disco suficiente disponível antes de executar o processo de backup. Espera-se que este touro tenha pelo menos 3,5 GB.

[stack@director ~]\$df -h

4. Execute esses comandos como o usuário raiz para fazer backup dos dados do nó de nuvem para um arquivo chamado **undercloud-backup-[timestamp].tar.gz** e transfira-os para o servidor de backup.

[root@director ~]# mysqldump --opt --all-databases > /root/undercloud-all-databases.sql
[root@director ~]# tar --xattrs -czf undercloud-backup-`date +%F`.tar.gz /root/undercloud-alldatabases.sql
/etc/my.cnf.d/server.cnf /var/lib/glance/images /srv/node /home/stack
tar: Removing leading `/' from member names

Backup ESC

1. O ESC, por sua vez, ativa a Virtual Network Function (VNF) interagindo com o VIM.

2. O ESC tem redundância 1:1 na solução Ultra-M. Há 2 VMs ESC implantadas e suportam uma única falha no Ultra-M, ou seja, recuperam o sistema se houver uma única falha no sistema.

Note: Se houver mais de uma falha, ela não é suportada e pode exigir a reimplantação do sistema.

Detalhes do backup ESC:

- Configuração running
- CDB ConfD
- Logs ESC
- Configuração de syslog

3. A frequência do backup do banco de dados ESC é complicada e precisa ser tratada com cuidado enquanto o ESC monitora e mantém as várias máquinas de estado para várias VMs VNF implantadas. Recomenda-se que esses backups sejam realizados após as seguintes atividades em determinado VNF/POD/Site

4. Verifique se a integridade do ESC está boa usando o script health.sh.

```
[root@auto-test-vnfm1-esc-0 admin]# escadm status
0 ESC status=0 ESC Master Healthy
[root@auto-test-vnfml-esc-0 admin]# health.sh
esc ui is disabled -- skipping status check
esc_monitor start/running, process 836
esc_mona is up and running ...
vimmanager start/running, process 2741
vimmanager start/running, process 2741
esc_confd is started
                                                      [ OK ]
tomcat6 (pid 2907) is running...
postgresql-9.4 (pid 2660) is running...
ESC service is running...
Active VIM = OPENSTACK
ESC Operation Mode=OPERATION
/opt/cisco/esc/esc_database is a mountpoint
DRBD_ROLE_CHECK=0
```

MNT_ESC_DATABSE_CHECK=0 VIMMANAGER_RET=0 ESC_CHECK=0 STORAGE_CHECK=0 ESC_SERVICE_RET=0 MONA_RET=0 ESC_MONITOR_RET=0

ESC HEALTH PASSED

5. Faça o backup da configuração em execução e transfira o arquivo para o servidor de backup.

```
[root@auto-test-vnfml-esc-0 admin]# /opt/cisco/esc/confd/bin/confd_cli -u admin -C
admin connected from 127.0.0.1 using console on auto-test-vnfml-esc-0.novalocal
auto-test-vnfml-esc-0# show running-config | save /tmp/running-esc-12202017.cfg
auto-test-vnfml-esc-0#exit
[root@auto-test-vnfml-esc-0 admin]# ll /tmp/running-esc-12202017.cfg
```

-rw-----. 1 tomcat tomcat 25569 Dec 20 21:37 /tmp/running-esc-12202017.cfg Backup do banco de dados ESC

Faça login na VM ESC e execute o seguinte comando antes de fazer o backup.

[admin@esc ~]# sudo bash [root@esc ~]# cp /opt/cisco/esc/esc-scripts/esc_dbtool.py /opt/cisco/esc/escscripts/esc_dbtool.py.bkup [root@esc esc-scripts]# sudo sed -i "s,'pg_dump,'/usr/pgsql-9.4/bin/pg_dump," /opt/cisco/esc/esc-scripts/esc_dbtool.py

#Set ESC to mainenance mode
[root@esc esc-scripts]# escadm op_mode set --mode=maintenance

Verifique o modo ESC e certifique-se de que ele esteja no modo de manutenção.

[root@esc esc-scripts]# escadm op_mode show

3. Banco de dados de backup usando a ferramenta de restauração de backup de banco de dados disponível em ESC.

[root@esc scripts]# sudo /opt/cisco/esc/esc-scripts/esc_dbtool.py backup --file scp://<username>:<password>@<backup_vm_ip>:<filename>

4. Defina ESC de volta para o modo de operação e confirme o modo.

[root@esc scripts]# escadm op_mode set --mode=operation

[root@esc scripts]# escadm op_mode show
5. Navegue até o diretório de scripts e colete os logs.

[root@esc scripts]# /opt/cisco/esc/esc-scripts

sudo ./collect_esc_log.sh

6. Para criar um instantâneo do ESC, desligue o ESC pela primeira vez.

shutdown -r now 7. A partir do OSPD, criar um instantâneo de imagem

nova image-create --poll esc1 esc_snapshot_27aug2018
8. Verifique se o snapshot foi criado

openstack image list | grep esc_snapshot_27aug2018
9. Iniciar o ESC do OSPD

nova start escl

10. Repita o mesmo procedimento na VM ESC em standby e transfira os registros para o servidor de backup

11. Coletar o backup da configuração do syslog no ESC VMS e transferi-lo para o servidor de backup

```
[admin@auto-test-vnfm2-esc-1 ~]$ cd /etc/rsyslog.d
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$ls /etc/rsyslog.d/00-escmanager.conf
00-escmanager.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$ls /etc/rsyslog.d/01-messages.conf
01-messages.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$ls /etc/rsyslog.d/02-mona.conf
02-mona.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$ls /etc/rsyslog.conf
rsyslog.conf
```

Backup do CPS

1. Criar um backup do Gerenciador de cluster CPS

Use este comando para exibir as instâncias de nova e anote o nome da instância de VM do gerenciador de cluster:

^{nova list} Parar o cluman do ESC

```
/opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli vm-action STOP <vm-name>
Etapa 2. Verifique o gerenciador de cluster no estado SHUTOFF.
```

admin@esc1 ~]\$ /opt/cisco/esc/confd/bin/confd_cli

admin@escl> show esc_datamodel opdata tenants tenant Core deployments * state_machine Etapa 3. Crie uma imagem de instantâneo nova conforme mostrado no seguinte comando:

```
nova image-create --poll
```

Note: Certifique-se de que você tenha espaço em disco suficiente para o snapshot.

Importante - Caso a VM se torne inalcançável após a criação do snapshot, verifique o status da VM usando o comando nova list. Se estiver no estado "SHUTOFF", você precisará iniciar a VM manualmente.

Etapa 4. Exiba a lista de imagens com o seguinte comando: nova image-list Figura 1: Saída de exemplo

ID	Name	Status Server
146719e8-d8a0-4d5a-9b15-2a669cfab81f 1955d56e-4ecf-4269-b53d-b30e73ad57f0 2bbfb51c-cd05-4b7c-ad77-8362d76578db	CPS_10.9.9_20160803_100301_112.isc base_vm cluman_snapshot	 ACTIVE ACTIVE ACTIVE 4842ae5a-83a3-48fd-915b-6ca6361adb2c

Etapa 5. Quando um snapshot é criado, a imagem do snapshot é armazenada no OpenStack Glance. Para armazenar o snapshot em um armazenamento de dados remoto, baixe o snapshot e transfira o arquivo no OSPD para (/home/stack/CPS_BACKUP)

Para baixar a imagem, use o seguinte comando no OpenStack:

glance image-download --file For example: glance image-download --file snapshot.raw 2bbfb51ccd05-4b7c-ad77-8362d76578db

Etapa 6. Liste as imagens baixadas conforme mostrado no seguinte comando:

ls -ltr *snapshot*

Example output: -rw-r--r-. 1 root root 10429595648 Aug 16 02:39 snapshot.raw Passo 7. Armazene o instantâneo da VM do Cluster Manager a ser restaurado no futuro.

2. Faça backup da configuração e do banco de dados.

```
    config_br.py -a export --all /var/tmp/backup/ATP1_backup_all_$(date +\%Y-\%m-\%d).tar.gz OR
    config_br.py -a export --mongo-all /var/tmp/backup/ATP1_backup_mongoall$(date +\%Y-\%m-\%d).tar.gz
    config_br.py -a export --svn --etc --grafanadb --auth-htpasswd --haproxy /var/tmp/backup/ATP1_backup_svn_etc_grafanadb_haproxy_$(date +\%Y-\%m-\%d).tar.gz
    mongodump - /var/qps/bin/support/env/env_export.sh --mongo /var/tmp/env_export_$date.tgz
    patches - cat /etc/broadhop/repositories, check which patches are installed and copy those patches to the backup directory /home/stack/CPS_BACKUP on OSPD
    backup the cronjobs by taking backup of the cron directory: /var/spool/cron/ from the Pcrfclient01/Cluman. Then move the file to CPS_BACKUP on the OSPD.
```

Verifique na crontab -l se é necessário qualquer outro backup

Transferir todos os backups para o OSPD /home/stack/CPS_BACKUP

3. Arquivo de cópia de segurança do ESC Master

```
/opt/cisco/esc/confd/bin/netconf-console --host 127.0.0.1 --port 830 -u <admin-user> -p <admin-
password> --get-config > /home/admin/ESC_config.xml
```

Transferir o arquivo em OSPD /home/stack/CPS_BACKUP

4. Fazer backup de entradas crontab -l

Crie um arquivo txt com crontab -l e ftp para um local remoto (em OSPD /home/stack/CPS_BACKUP)

5. Fazer um backup dos arquivos de rota do cliente LB e PCRF

Collect and scp the below conifgurations from both LBs and Pcrfclients route -n /etc/sysconfig/network-script/route-*

Procedimento de restauração

Recuperação de OSPD

O procedimento de recuperação do OSPD é executado com base nas seguintes suposições

- 1. O backup do OSPD está disponível no servidor OSPD antigo.
- 2. A recuperação do OSPD será feita no novo servidor, que é a substituição do antigo servidor

OSPD no sistema. .

Recuperação ESC

1. VM ESC é recuperável se a VM estiver em estado de erro ou desligamento, faça a reinicialização forçada para ativar a VM afetada. Execute estas etapas para recuperar o ESC.

2. Identifique a VM que está no estado ERROR ou Shutdown, depois de identificar a reinicialização forçada da VM ESC. Neste exemplo, você está reinicializando o teste automático-vnfm1-ESC-0.

```
[root@tbl-baremetal scripts]# nova list | grep auto-test-vnfml-ESC-
 f03e3cac-a78a-439f-952b-045aea5b0d2c | auto-test-vnfm1-ESC-
0
                                      ACTIVE | -
                                                           running
                                                                         auto-testautovnf1-
uas-orchestration=172.57.12.11; auto-testautovnfl-uas-
management=172.57.11.3
| 79498e0d-0569-4854-a902-012276740bce | auto-test-vnfm1-ESC-
1
                                      ACTIVE - running
                                                                         | auto-testautovnf1-
uas-orchestration=172.57.12.15; auto-testautovnfl-uas-
management=172.57.11.5
           [root@tb1-baremetal scripts]# [root@tb1-baremetal scripts]# nova reboot --hard f03e3cac-a78a-
439f-952b-045aea5b0d2c\
Request to reboot server <Server: auto-test-vnfm1-ESC-0> has been accepted.
```

[root@tb1-baremetal scripts]#

3. Se a VM ESC for excluída e precisar ser exibida novamente. Siga abaixo a sequência de etapas

4. Se a VM ESC não for recuperável e exigir a restauração do banco de dados, restaure o banco de dados do backup anterior.

5. Para a restauração do banco de dados ESC, temos que garantir que o serviço esc seja interrompido antes de restaurar o banco de dados; Para o ESC HA, execute primeiro na VM secundária e depois na VM principal.

service keepalived stop

6. Verifique o status do serviço ESC e certifique-se de que tudo esteja parado nas VMs primária e secundária para HA.

escadm status

7. Execute o script para restaurar o banco de dados. Como parte da restauração do banco de dados para a instância do ESC recém-criada, a ferramenta também promoverá uma das instâncias para ser um ESC primário, montará sua pasta de banco de dados para o dispositivo drbd e iniciará o banco de dados PostgreSQL.

/opt/cisco/esc/esc-scripts/esc_dbtool.py restore --file scp://<username>:<password>@<backup_vm_ip>:<filename>

8. Reinicie o serviço ESC para concluir a restauração do banco de dados. Para executar HA em ambas as VMs, reinicie o serviço keepalived.

service keepalived start

 Depois que a VM for restaurada e executada com êxito; certifique-se de que toda a configuração específica do syslog seja restaurada a partir do backup conhecido anterior. verifique se ele foi restaurado em todas as VMs do ESC.

[admin@auto-test-vnfm2-esc-1 ~]\$
[admin@auto-test-vnfm2-esc-1 ~]\$ cd /etc/rsyslog.d
[admin@auto-test-vnfm2-esc-1 rsyslog.d]\$ls /etc/rsyslog.d/00-escmanager.conf
00-escmanager.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]\$ls /etc/rsyslog.d/01-messages.conf
01-messages.conf

[admin@auto-test-vnfm2-esc-1 rsyslog.d]\$1s /etc/rsyslog.d/02-mona.conf 02-mona.conf

[admin@auto-test-vnfm2-esc-1 rsyslog.d]\$ls /etc/rsyslog.conf

rsyslog.conf

10. Se o ESC precisar ser reconstruído do snapshot OSPD, use esse comando com o uso do snapshot obtido durante o backup.

nova rebuild --poll --name esc_snapshot_27aug2018 esc1 11. Verifique o status do ESC após a conclusão da reconstrução

nova list --fileds name,host,status,networks | grep esc 12. Verifique a integridade do ESC com o comando abaixo

health.sh

Copy Datamodel to a backup file /opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli get esc_datamodel/opdata > /tmp/esc_opdata_`date +%Y%m%d%H%M%S`.txt

Quando o ESC não inicia a VM

 Em alguns casos, o ESC não iniciará a VM devido a um estado inesperado. Uma solução alternativa é executar um switchover ESC reinicializando o ESC mestre. A transição para o ESC levará cerca de um minuto. Execute health.sh no novo ESC mestre para verificar se ele está ativado. Quando o ESC se tornar Master, o ESC poderá corrigir o estado da VM e iniciar a VM. Como essa operação está agendada, você deve aguardar de 5 a 7 minutos para que seja concluída.

- Você pode monitorar /var/log/esc/yangesc.log e /var/log/esc/escmanager.log. Se você NÃO vir a VM sendo recuperada após 5 a 7 minutos, o usuário precisaria ir e fazer a recuperação manual das VMs afetadas.
- Depois que a VM for restaurada e executada com êxito; certifique-se de que toda a configuração específica do syslog seja restaurada a partir do backup conhecido anterior. Verifique se ele foi restaurado em todas as VMs do ESC

```
root@abautotestvnfm1em-0:/etc/rsyslog.d# pwd
/etc/rsyslog.d
root@abautotestvnfm1em-0:/etc/rsyslog.d# 11
total 28
drwxr-xr-x 2 root root 4096 Jun 7 18:38 ./
drwxr-xr-x 86 root root 4096 Jun 6 20:33 ../]
-rw-r--r- 1 root root 319 Jun 7 18:36 00-vnmf-proxy.conf
-rw-r--r- 1 root root 317 Jun 7 18:38 01-ncs-java.conf
-rw-r--r- 1 root root 311 Mar 17 2012 20-ufw.conf
-rw-r--r- 1 root root 252 Nov 23 2015 21-cloudinit.conf
-rw-r--r- 1 root root 1655 Apr 18 2013 50-default.conf
```

```
root@abautotestvnfm1em-0:/etc/rsyslog.d# ls /etc/rsyslog.conf
rsyslog.conf
```

Recuperação de CPS

Restaurar VM do Cluster Manager no OpenStack

Etapa 1 Copiar o snapshot de VM do gerenciador de cluster para o blade do controlador, conforme mostrado no seguinte comando:

ls -ltr *snapshot*

Example output: -rw-r--r-. 1 root root 10429595648 Aug 16 02:39 snapshot.raw Etapa 2 Fazer upload da imagem do snapshot para o OpenStack do Datastore:

```
glance image-create --name --file --disk-format qcow2 --container-format bare
Etapa 3 Verificar se o snapshot foi carregado com um comando Nova, conforme mostrado no
exemplo a seguir:
```

nova image-list Figura 2: Saída de exemplo

ID		Name	Status	Server	1
146719 1955d5 2bbfb5 5eebff	e8-d8a0-4d5a-9b15-2a669cfab81f 6e-4ecf-4269-b53d-b30e73ad57f0 1c-cd05-4b7c-ad77-8362d76578db 44-658a-49a5-a170-1978f6276d18	CPS_10.9.9_20160803_100301_112.iso base_vm cluman_snapshot imported_image	ACTIVE ACTIVE ACTIVE ACTIVE	4842ae5a-83a3-48fd-915b-6ca6361adb2c	

Etapa 4 Dependendo se a VM do gerenciador de cluster existe ou não, você pode optar por criar o cluman ou reconstruir o cluman:

Se a instância da VM do Cluster Manager não existir, crie a VM Cluman com um comando Heat ou Nova como mostrado no exemplo a seguir:

Crie a VM Cluman com ESC

```
/opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli edit-config /opt/cisco/esc/cisco-
cps/config/gr/tmo/gen/<original_xml_filename>
```

O cluster PCRF será gerado com a ajuda do comando acima e, em seguida, restaurará as configurações do gerenciador de cluster a partir dos backups realizados com a restauração config_br.py, mongorestore a partir do dump tomado no backup

```
delete - nova boot --config-drive true --image "" --flavor "" --nic net-id=",v4-fixed-ip=" --nic
net-id="network_id,v4-fixed-ip=ip_address" --block-device-mapping "/dev/vdb=2edbac5e-55de-4d4c-
a427-ab24ebe66181:::0" --availability-zone "az-2:megh-os2-compute2.cisco.com" --security-groups
cps_secgrp "cluman"
```

Se a instância da VM do Cluster Manager existir, use um comando nova rebuild para reconstruir a instância da VM Cluman com o snapshot carregado, como mostrado:

nova rebuild <instance_name> <snapshot_image_name>
Por exemplo:

nova rebuild cps-cluman-5f3tujqvbi67 cluman_snapshot

Etapa 5 Listar todas as instâncias conforme mostrado e verificar se a nova instância do gerenciador de cluster foi criada e está em execução:

nova list Figura 3. Saída de exemplo

+ ID	Name	Status	Task State	Power State	Networks
ac3d2dbc-7b0e-4df4-a690-7f84ca3032bd	cluman	ACTIVE	-	Running	management=172.20.67.34; internal=172.20.70.34

Restaure os patches mais recentes no sistema

```
1. Copy the patch files to cluster manager which were backed up in OSPD /home/stack/CPS_BACKUP
```

2. Login to the Cluster Manager as a root user.

3. Untar the patch by executing the following command: tar -xvzf [patch name].tar.gz

4. Edit /etc/broadhop/repositories and add the following entry: file:///\$path_to_the

```
plugin/[component name]
```

5.	Run build_all.sh script to create updated QPS packages:		
/var/qps/install/current/scripts/build_all.sh			
6.	Shutdown all software components on the target VMs: runonall.sh sudo monit stop all		
7.	Make sure all software components are shutdown on target VMs: statusall.sh		

Note: Todos os componentes do software devem exibir Não monitorado como o status atual.

 Update the qns VMs with the new software using reinit.sh script: /var/qps/install/current/scripts/upgrade/reinit.sh
 Restart all software components on the target VMs: runonall.sh sudo monit start all
 Verify that the component is updated, run: about.sh

Restaure os trabalhos em frente

1. Mova o arquivo de backup do OSPD para o Cluman/Pcrfclient01.

2. Execute o comando para ativar o cronjob a partir do backup.

#crontab Cron-backup

3. Verifique se os cronjobs foram ativados pelo comando abaixo.

#crontab -1

Restaurar VMs individuais no cluster

Para reimplantar a VM pcrfclient01:

Etapa 1 Fazer login na VM do Cluster Manager como o usuário raiz.

Etapa 2 Observe o UUID do repositório SVN usando o seguinte comando:

svn info http://pcrfclient02/repos | grep UUID O comando exibirá o UUID do repositório.

Por exemplo: UUID do repositório: ea50bbd2-5726-46b8-b807-10f4a7424f0e

Etapa 3 Importar os dados de configuração do Policy Builder de backup no Cluster Manager, como mostrado no seguinte exemplo:

config_br.py -a import --etc-oam --svn --stats --grafanadb --auth-htpasswd --users /mnt/backup/oam_backup_27102016.tar.gz

Note: Muitas implantaçõesexecutam um trabalho cron que faz backup dos dados de configuração regularmente.ConsulteBackup do repositório de subversão para obter mais detalhes.

Etapa 4 Para gerar os arquivos de arquivo da VM no Cluster Manager usando as configurações mais recentes, execute o seguinte comando:

/var/qps/install/current/scripts/build/build_svn.sh

Etapa 5 Para implantar a VM pcrfclient01, execute um dos seguintes procedimentos:

No OpenStack, use o modelo HEAT ou o comando Nova para recriar a VM. Para obter mais informações, consulte o Guia de Instalação do CPS para OpenStack.

Etapa 6 RestabelecerSincronização mestre/escravo SVN entre pcrfclient01 e pcrfclient02 com pcrfclient01 como mestre executando a seguinte série de comandos.

Se o SVN já estiver sincronizado, não emita esses comandos.

Para verificar se o SVN está sincronizado, execute o seguinte comando do pcrfclient02.

Se um valor for retornado, o SVN já está sincronizado:

```
/usr/bin/svn propget svn:sync-from-url --revprop -r0 http://pcrfclient01/repos
Execute os seguintes comandos do pcrfclient01:
```

/bin/rm -fr /var/www/svn/repos

/usr/bin/svnadmin create /var/www/svn/repos

```
/usr/bin/svn propset --revprop -r0 svn:sync-last-merged-rev 0 http://pcrfclient02/repos-proxy-
sync
```

/usr/bin/svnadmin setuuid /var/www/svn/repos/ "Enter the UUID captured in step 2"

/etc/init.d/vm-init-client /

var/qps/bin/support/recover_svn_sync.sh Etapa 7 Se pcrfclient01 também é a VM do árbitro, execute as seguintes etapas:

a) Crie os scripts mongosb start/stop com base na configuração do sistema. Nem todas as implantações têm todos esses bancos de dados configurados.

Note: Consulte /etc/broadhop/mongoConfig.cfg para determinar quais bancos de dados precisam ser configurados.

cd /var/qps/bin/support/mongo

```
build_set.sh --session --create-scripts
build_set.sh --admin --create-scripts
build_set.sh --spr --create-scripts
build_set.sh --balance --create-scripts
build_set.sh --audit --create-scripts
build_set.sh --report --create-scripts
```

b) Iniciar o processo mongo:

/usr/bin/systemctl start sessionmgr-XXXXX

c) Aguarde o árbitro iniciar e execute diagnostics.sh — get_réplica_status para verificar a integridade do conjunto de réplicas.

Para reimplantar a VM pcrfclient02:

Etapa 1 Fazer login na VM do Cluster Manager como o usuário raiz

Etapa 2 Para gerar os arquivos de arquivo da VM no Cluster Manager usando as configurações mais recentes, execute o seguinte comando:

/var/qps/install/current/scripts/build/build_svn.sh

Etapa 3 Para implantar a VM pcrfclient02, execute um dos seguintes procedimentos: No OpenStack, use o modelo HEAT ou o comando Nova para recriar a VM. Para obter mais informações, consulte o Guia de Instalação do CPS para OpenStack.

Etapa 4 Secure shell para o pcrfclient01:

ssh pcrfclient01

Etapa 5 Executar o seguinte script para recuperar os acordos de recompra SVN do pcrfclient01:

/var/qps/bin/support/recover_svn_sync.sh Para reimplantar uma VM do gerente de sessão:

Etapa 1 Fazer login na VM do Cluster Manager como o usuário raiz

Etapa 2 Para implantar a VM do sessionmgr e substituir a VM com falha ou corrompida, execute um dos seguintes procedimentos:

No OpenStack, use o modelo HEAT ou o comando Nova para recriar a VM. Para obter mais informações, consulte o Guia de instalação do CPS para OpenStack

Etapa 3 Crie os scripts mongosb start/stop com base na configuração do sistema.

Nem todas as implantações têm todos esses bancos de dados configurados. Consulte /etc/broadhop/mongoConfig.cfg para determinar quais bancos de dados precisam ser configurados

cd /var/qps/bin/support/mongo

```
build_set.sh --session --create-scripts
build_set.sh --admin --create-scripts
build_set.sh --spr --create-scripts
build_set.sh --balance --create-scripts
build_set.sh --audit --create-scripts
build_set.sh --report --create-scripts
```

Etapa 4 Proteger o shell para a VM do sessionmgr e iniciar o processo mongo:

ssh sessionmgrXX

/usr/bin/systemctl start sessionmgr-XXXXX

Etapa 5 Aguarde até que os membros iniciem e os membros secundários sincronizem e execute diagnostics.sh — get_réplica_status para verificar a integridade do banco de dados.

Etapa 6 Para restaurar o banco de dados do Session Manager, use um dos seguintes comandos de exemplo, dependendo se o backup foi executado com a opção —mongo-all ou —mongo:

```
    config_br.py -a import --mongo-all --users /mnt/backup/Name of backup
```

or

```
• config_br.py -a import --mongo --users /mnt/backup/Name of backup
Para reimplantar a VM do Policy Diretor (Balanceador de Carga):
```

Etapa 1 Fazer login na VM do Cluster Manager como o usuário raiz.

Etapa 2 Para importar os dados de configuração do Policy Builder de backup no Cluster Manager, execute o seguinte comando:

```
config_br.py -a import --network --haproxy --users /mnt/backup/lb_backup_27102016.tar.gz
```

Etapa 3 Para gerar os arquivos de arquivo da VM no Cluster Manager usando as configurações mais recentes, execute o seguinte comando:

/var/qps/install/current/scripts/build/build_svn.sh

Etapa 4 Para implantar a VM lb01, execute um dos seguintes procedimentos:

No OpenStack, use o modelo HEAT ou o comando Nova para recriar a VM. Para obter mais informações, consulte o Guia de Instalação do CPS para OpenStack.

Para reimplantar a VM do Servidor de Políticas (QNS):

Etapa 1 Fazer login na VM do Cluster Manager como o usuário raiz.

Etapa 2 Importar os dados de configuração do Policy Builder de backup no Cluster Manager, como mostrado no seguinte exemplo:

config_br.py -a import --users /mnt/backup/qns_backup_27102016.tar.gz

Etapa 3 Para gerar os arquivos de arquivo da VM no Cluster Manager usando as configurações mais recentes, execute o seguinte comando:

/var/qps/install/current/scripts/build/build_svn.sh

Etapa 4 Para implantar a VM qns, execute um dos seguintes procedimentos: No OpenStack, use o modelo HEAT ou o comando Nova para recriar a VM. Para obter mais informações, consulte o Guia de instalação do CPS para OpenStack

Procedimento geral para restauração de banco de dados

Etapa 1 Execute o seguinte comando para restaurar o banco de dados:

config_br.py -a import --mongo-all /mnt/backup/backup_\$date.tar.gz where \$date is the timestamp
when the export was made.
Por exemplo,

config_br.py -a import --mongo-all /mnt/backup/backup_27092016.tgz Etapa 2 Faça login no banco de dados e verifique se ele está em execução e está acessível:

1. Faça login no gerenciador de sessões:

```
mongo --host sessionmgr01 --port $port
onde $port é o número da porta do banco de dados a ser verificado. Por exemplo, 27718 é a
porta de saldo padrão.
```

2. Exiba o banco de dados executando o seguinte comando:

show dbs

3. Mude o shell mongo para o banco de dados executando o seguinte comando:

use \$db

onde \$db é um nome de banco de dados exibido no comando anterior.

O comando 'use' alterna o shell mongo para esse banco de dados.

Por exemplo,

use balance_mgmt 4. Para exibir as coleções, execute o seguinte comando:

show collections 5. Para exibir o número de registros na coleção, execute o seguinte comando:

db.\$collection.count()

For example, db.account.count()

O exemplo acima mostrará o número de registros na coleção "conta" no banco de dados Saldo

(balance_mgmt).

Restauração do repositório de subversão

Para restaurar os Dados de Configuração do Policy Builder a partir de um backup, execute o seguinte comando:

config_br.py -a import --svn /mnt/backup/backup_\$date.tgz where, \$date is the date when the cron
created the backup file.
Restaurar painel do Grafana

Você pode restaurar o painel do Grafana usando o seguinte comando:

config_br.py -a import --grafanadb /mnt/backup/ Validando a restauração

Depois de restaurar os dados, verifique o sistema em funcionamento executando o seguinte comando:

/var/qps/bin/diag/diagnostics.sh