OMP 최적 경로 계산 알고리즘을 사용하여 성능 문제 해결 및 애플리케이션 흐름 설계

목차			

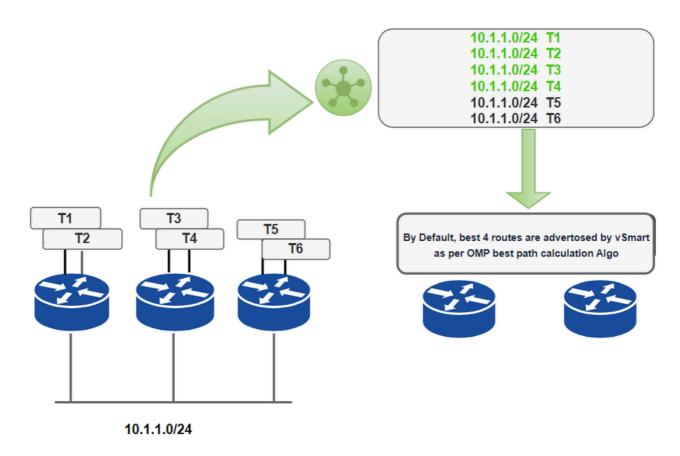
소개

이 문서에서는 OMP(Overlay Management Protocol) 최적 경로 계산 알고리즘을 사용하여 성능 문제를 해결하고 애플리케이션 흐름을 설계하는 방법에 대해 설명합니다.

사전 요구 사항

Cisco SD-WAN(Software Defined Wide Area Network) 솔루션 지식이 권장됩니다.

사용되는 구성 요소


이 문서의 정보는 특정 랩 환경의 디바이스를 토대로 작성되었습니다. 이 문서에 사용된 모든 디바이스는 초기화된(기본) 컨피그레이션으로 시작되었습니다. 현재 네트워크가 작동 중인 경우 모든 명령의 잠재적인 영향을 미리 숙지하시기 바랍니다.

이 문서는 다음 소프트웨어 및 하드웨어 버전을 기반으로 합니다.

- Cisco IOS® Catalyst SD-WAN Manager(vManage라고도 함)
- Cisco IOS Catalyst SD-WAN Validator(vBond라고도 함)
- Cisco IOS Catalyst SD-WAN 컨트롤러(vSmart라고도 함)
- Cisco IOS XE Catalyst SD-WAN 장치

OMP 최적 경로 계산

Cisco SD-WAN 솔루션에서 Cisco IOS XE Catalyst SD-WAN 장치는 OMP(Overlay Management Protocol)를 통해 로컬 서브넷을 Cisco Catalyst SD-WAN 컨트롤러에 광고합니다. 일반적인 프로덕션 환경에서는 이중화를 위해 로컬 네트워크가 둘 이상의 WAN 에지 디바이스에 연결되며, 또한 각 TLOC(Transport Locator)를 통해 알려진 각 서브넷에 연결할 수 있습니다.

기본 OMP 경로 알림

토폴로지에 따라 3개의 Cisco IOS XE Catalyst SD-WAN 장치가 서브넷 10.1.1.0/24에 연결되며 T1-T6가 TLOC입니다. 첫 번째 라우터는 TLOC T1 및 TLOC T2를 통해 연결할 수 있는 Cisco Catalyst SD-WAN 컨트롤러에 서브넷 10.1.1.0/24을 광고합니다. 마찬가지로, 다른 2개의 SD-WAN 라우터는 각각 TLOC 3,4,5 및 6을 통해 연결할 수 있는 동일한 서브넷 10.1.1.0/24을 광고하며 Cisco Catalyst SD-WAN Controller에는 10.1.1.0/24 접두사에 대한 6개의 OMP 경로가 있습니다. 이제 vSmart는 이 접두사에 대해 사용 가능한 모든 경로에서 OMP Best-Path Calculation Algorithm을 실행하여 모든 WAN 에지 라우터로 전송할 경로를 선택합니다. 기본적으로 Cisco IOS XE Catalyst SD-WAN 장치 및 Cisco Catalyst SD-WAN 컨트롤러는 동일한 경로에 대해 최대 4개의 동일 비용 경로 TLOC 튜플을 광고합니다. 동일한 경로에 대해 1~16개의 route-TLOC 튜플을 광고하도록 구성할 수 있습니다.

Device(config-omp)# send-path-limit <1 -16>

백업 경로를 Cisco IOS XE Catalyst SD-WAN 디바이스에 알리도록 Cisco Catalyst SD-WAN 컨트롤러를 구성할 수도 있습니다. 기본적으로 OMP는 최상의 경로만 광고합니다. 백업 경로를 보내도록 구성하는 경우 OMP는 최상의 경로 외에 첫 번째 최상의 경로가 아닌 경로도 광고합니다.

Device(config-omp)# send-backup-paths

또한 SD-WAN 디바이스는 Cisco Catalyst SD-WAN Controller에서 수신한 OMP 경로를 로컬 경로 테이블에 설치합니다. 기본적으로 SD-WAN 디바이스는 최대 4개의 고유한 OMP 경로를 경로 테이블에 설치합니다. 다음 명령을 사용하여 이 번호를 수정할 수 있습니다.

디바이스(config-omp)# ecmp-limit <1 -16 >

설치된 OMP 경로의 최대 수는 구성된 제한에 따라 1에서 16까지의 범위가 될 수 있습니다.

OMP 경로 알림

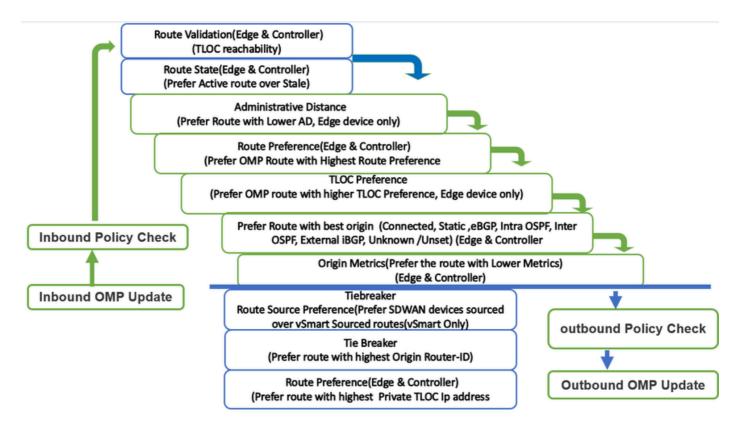
Cisco SD-WAN Controller 및 Cisco IOS XE Catalyst SD-WAN 디바이스에서 OMP는 로컬 사이트에서 피어로 학습한 경로 및 서비스와 해당 전송 위치 매핑(TLOCs라고 함)을 광고합니다. 이러한 경로를 OMP 경로 또는 vRoutes라고 합니다. 이러한 경로는 경로 및 경로와 연결된 TLOC로 구성된 튜플입니다. OMP Cisco Catalyst SD-WAN Controller를 통해 네트워크에서 사용 가능한 토폴로지 및 서비스를 학습합니다. OMP는 각 로컬 디바이스에서 경로 선택, 루프 회피 및 정책 구현을 수행하여 어떤 경로가 Cisco IOS XE Catalyst SD-WAN 디바이스의 로컬 라우팅 테이블에 설치되어 있는지 확인합니다.

OMP는 다음과 같은 유형의 경로를 광고합니다.

- OMP Routes/vRoutes OMP 오케스트레이션 전송 네트워크를 사용하는 엔드포인트 간의 연결성을 설정하는 접두사입니다. OMP 경로는 오버레이 네트워크의 모든 위치에서 중앙 데이터 센터, 지사, 호스트 및 기타 엔드포인트의 다양한 서비스를 나타냅니다.
- TLOC OMP 경로를 물리적 위치에 연결하는 식별자. TLOC는 기본 네트워크에 표시되는 OMP 라우팅 도메인의 유일한 엔터티이며, 기본 네트워크 테이블의 라우팅을 통해 연결할 수 있어야 합니다. BGP(Border Gateway Protocol)와 비교할 때 TLOC는 OMP 경로에 대한 다음 홉 역할을 합니다.
- Service Routes(서비스 경로) 네트워크의 서비스 위치를 지정하여 OMP 경로를 네트워크의 서비스에 연결하는 경로입니다. 서비스에는 방화벽, IDP(Intrusion Detection Systems), 로드 밸런서가 포함됩니다.

OMP 경로 속성

Cisco SD-WAN 디바이스는 다음과 같은 특성으로 사이트 로컬 경로를 광고합니다.


- TLOC
- 시스템 IP
- 색상
- 터널의 캡슐화 유형
- Origin 경로의 소스(예: Connected, Static, EIGRP, BGP, OSPF, connected, static) 및 원래 경로와 연결된 메트릭
- Originator 경로 발신자의 OMP 식별자는 경로를 학습한 IP 주소입니다
- 기본 설정 더 높은 기본 설정 값이 선호됩니다.
- 서비스 OMP 경로와 연결된 네트워크 서비스
- 사이트 ID
- Tag 선택적 전이적 경로 특성
- VPN OMP 경로가 속한 VPN 또는 네트워크 세그먼트

TLOC 경로 특성

TLOC 경로는 전송 위치를 식별합니다. 이러한 위치는 오버레이 네트워크에서 WAN 인터페이스가 캐리어에 연결되는 지점과 같이 물리적 전송에 연결되는 위치입니다. TLOC 경로는 다음 특성을 광고합니다.

- TLOC 개인 주소 TLOC와 연결된 인터페이스의 개인 IP 주소
- TLOC 공용 주소 TLOC의 NAT 변환 주소
- Carrier(운송업체) 운송업체 유형의 식별자로, 일반적으로 운송이 공용 또는 개인인지를 나타내는 데 사용됩니다.
- 색상
- 캡슐화 유형 터널 캡슐화 유형
- Preference(선호도) 동일한 OMP 경로를 광고하는 TLOC를 구별하는 데 사용되는 선호도
- 사이트 ID TLOC가 속한 Cisco SD-WAN 오버레이 네트워크 도메인 내 사이트의 식별자
- 태그
- Weight(가중치) 두 개 이상의 TLOC를 통해 OMP 경로에 연결할 수 있는 경우 여러 진입점을 구분하는 데 사용되는 값입니다.

OMP 최적 경로 알고리즘 및 루프 회피

OMP 최적 경로 계산 프로세스는 다음과 같습니다.

- 1. 활성 경로 선호 활성 경로가 부실 경로보다 우선합니다. 경로를 전송한 피어와 OMP 세션이 UP 상태인 경우 경로가 ACTIVE입니다. 경로를 전송한 피어와의 OMP 세션이 GRACEFUL RESTART 모드에 있으면 경로가 부실합니다.
- 2. Select Valid Routes OMP 경로가 유효하려면 경로에 알려진 연결 가능한 next-hop TLOC가 있어야 합니다.
- 3. AD(Administrative Distance)가 낮은 경로 선호 경로가 유효하고 동일한 Cisco SD-WAN 디바이스에서 수신한 경우 AD가 낮은 OMP 경로를 선택합니다. AD는 동일한 WAN 에지 라우터가 여러 라우팅 프로토콜에서 동일한 사이트 로컬 접두사를 수신하는 경우에만 비교됩니다. AD는 각 라우터에서 로컬로 중요한 값입니다. 광고되지 않으며 Cisco SD-WAN 컨트롤러, 즉 vSmart에 영향을 주지 않습니다.

- 4. OMP 경로 기본 설정 값이 높은 경로 선호 기본적으로 모든 OMP 경로는 기본 설정이 0이며 트래픽 엔지니어링을 수행하는 데 자주 사용됩니다.
- 5. TLOC 기본 설정 값이 더 높은 경로 선호 TLOC 기본 설정을 변경하면 모든 VPN에 대한 vEdge 경로 선택에 영향을 줍니다.
- 6. 출처 유형과 하위 유형을 비교하고 다음 순서로 첫 번째 대응을 선택합니다.
- 연결됨
- 고정
- EIGRP 요약
- BGP 외부
- EIGRP 내부
- OSPF/OSPFv3 영역 내
- OSPF/OSPFv3 Inter-area
- IS-IS 레벨 1
- EIGRP 외부
- OSPF/OSPFv3 External(외부 OSPF Type1이 외부 OSPF Type2보다 우선함)
- IS-IS 레벨 2
- BGP 내부
- 알수없음
- 7. 원천 메트릭을 비교합니다. 경로의 원천 유형이 동일한 경우 원천 메트릭이 더 낮은 OMP 경로를 선택합니다.
- 8. 경로 소스 -Cisco Catalyst SD-WAN 컨트롤러에서 제공하는 것과 동일한 경로를 통해 에지 라우 터에서 제공하는 경로를 선호합니다.
- 9. 출처 ID 출처 유형이 동일한 경우 라우터 ID가 가장 낮은 경로(System-IP)를 선택합니다.
- 10. 개인 IP 주소- 라우터 ID가 같으면 Cisco vEdge 장치가 더 낮은 개인 IP 주소로 OMP 경로를 선택합니다. Cisco vSmart Controller가 서로 다른 두 사이트에서 동일한 접두사를 수신하고 모든 특성이 동일한 경우 두 접두사를 모두 선택합니다.

이 번역에 관하여

Cisco는 전 세계 사용자에게 다양한 언어로 지원 콘텐츠를 제공하기 위해 기계 번역 기술과 수작업 번역을 병행하여 이 문서를 번역했습니다. 아무리 품질이 높은 기계 번역이라도 전문 번역가의 번 역 결과물만큼 정확하지는 않습니다. Cisco Systems, Inc.는 이 같은 번역에 대해 어떠한 책임도 지지 않으며 항상 원본 영문 문서(링크 제공됨)를 참조할 것을 권장합니다.