Fase 6 de Troubleshooting de Trayectoria de Datos de Firepower: Autenticación activa

Contenido

Introducción Prerequisites Solución de problemas de la fase de autenticación activa Verificar el método de redirección Generar capturas de paquetes Análisis de archivos de captura de paquetes (PCAP) Descifrado del flujo cifrado Visualización del archivo PCAP descifrado Pasos de mitigación Cambiar sólo a autenticación pasiva Datos que se deben proporcionar al TAC Pasos siguientes

Introducción

Este artículo forma parte de una serie de artículos que explican cómo resolver sistemáticamente los problemas de la ruta de datos en sistemas Firepower para determinar si los componentes de Firepower pueden estar afectando al tráfico. Consulte el <u>artículo Descripción general</u> para obtener información sobre la arquitectura de las plataformas Firepower y los enlaces a otros artículos de Troubleshooting de Trayectoria de Datos.

En este artículo se describe la sexta etapa de la solución de problemas de la ruta de datos de Firepower, la función de autenticación activa.

Prerequisites

- Este artículo pertenece a todas las plataformas Firepower soportadas actualmente
- El dispositivo Firepower se debe ejecutar en modo ruteado

Solución de problemas de la fase de autenticación activa

Al intentar determinar si un problema es causado por la identidad, es importante entender qué tráfico puede afectar esta función. Las únicas funciones de la identidad que pueden causar interacciones de tráfico son las relacionadas con la autenticación activa. La autenticación pasiva no puede hacer que el tráfico se descarte inesperadamente. Es importante comprender que sólo

el tráfico HTTP(S) se ve afectado por la autenticación activa. Si hay otro tráfico afectado porque la identidad no funciona, esto es más probable porque la política utiliza usuarios/grupos para permitir/bloquear el tráfico, de modo que cuando la función de identidad no puede identificar a los usuarios, pueden ocurrir cosas inesperadas, pero depende de la política de control de acceso del dispositivo y de la política de identidad. La resolución de problemas de esta sección aborda los problemas relacionados con la autenticación activa solamente.

Verificar el método de redirección

Las funciones de autenticación activas involucran al dispositivo Firepower que ejecuta un servidor HTTP. Cuando el tráfico coincide con una regla de política de identidad que contiene una acción de autenticación activa, Firepower envía un paquete 307 (redirección temporal) a la sesión, para redirigir clientes a su servidor de portal cautivo.

Actualmente hay cinco tipos diferentes de autenticación activa. Dos redirige a un nombre de host que consta del nombre de host del sensor y el dominio primario de Active Directory vinculado al rango, y tres redirige a la dirección IP de la interfaz en el dispositivo Firepower que está realizando la redirección del portal cautivo.

Si algo sale mal en el proceso de redirección, la sesión puede interrumpirse porque el sitio no está disponible. Por este motivo, es importante comprender cómo funciona el redireccionamiento en la configuración en ejecución. El siguiente gráfico ayuda a entender este aspecto de la configuración.

Si la autenticación activa se redirige al nombre de host, se redirigiría a los clientes a **ciscoasa.my-ad.domain:<port_used_for_cautive_portal>**

Generar capturas de paquetes

La recolección de capturas de paquetes es la parte más importante de la resolución de problemas de autenticación activa. Las capturas de paquetes tienen lugar en dos interfaces:

- 1. La interfaz en el dispositivo Firepower que el tráfico ingresa cuando se realiza la identidad/autenticación En el siguiente ejemplo, se utiliza **la** interfaz **interna**
- 2. La interfaz de túnel interna que Firepower utiliza para redireccionar al servidor HTTPS tun1 Esta interfaz se utiliza para redirigir el tráfico al portal cautivoLas direcciones IP del tráfico se cambian de nuevo a los originales al salir

Las dos capturas se inician, el tráfico interesante se ejecuta a través del dispositivo Firepower y luego se detienen las capturas.

Observe que el archivo de captura de paquetes de la interfaz interna, "ins_ntlm", se copia en el directorio /mnt/disk0. A continuación, se puede copiar en el directorio /var/common para descargarlo del dispositivo (/ngfw/var/common en todas las plataformas FTD):

> expert

copy /mnt/disk0/<pcap_file> /var/common/

Los archivos de captura de paquetes se pueden copiar del dispositivo Firepower desde el mensaje > usando las direcciones de este <u>artículo</u>.

Alternativamente, no hay opción en Firepower Management Center (FMC) en Firepower versión 6.2.0 y posterior. Para acceder a esta utilidad en el FMC, navegue hasta **Dispositivos** >

Administración de dispositivos. A continuación, haga clic en el botón junto al dispositivo en cuestión, seguido de **Resolución de problemas avanzada > Descarga de archivos**. A continuación, puede introducir el nombre de un archivo en cuestión y hacer clic en Descargar.

Overview Analysis Policies Device	s Objects Al	MP Intelligence									Deploy 08 Sy	stem Help 🔻	admin 🔻
					Configuration	Users	Domains	Integration	Updates	Licenses •	Health > Monitor	Monitoring •	Tools •
Advanced Troubleshooting													
File Download Threat Defense CLI	Packet Tracer	Capture w/Trace											
			File										
				Download Bo	ack								

Análisis de archivos de captura de paquetes (PCAP)

El análisis de PCAP en Wireshark se puede realizar para ayudar a identificar el problema dentro de las operaciones de autenticación activas. Dado que un puerto no estándar se utiliza en la configuración del portal cautivo (**885** de forma predeterminada), Wireshark debe configurarse para

If wireshark doesn't identify protocol as SSL, decode as...

192.168. D 192.168. S 192.168.62.1	ecode As how Packe	t in New	Window 885 192.168	.1 .1 .62.69		•	Field TCP por TCP por	rt rt	Value 17206 885	Type Integer, Integer,	base 10 base 10	Default (none) (none)	Current SSL SSL
dest port	Protocol	Lengti	Info							1	Protocol	Lengti	I Info
885	TCP	74	47336→885	[SYN]	Seq=14	44565408	31 Win=2	9200	Len=0 MS	e.	TCP	74	47336→885 [SYN] Seq=1445654081 Win=29200 Len=0 MSS
47336	TCP	74	885→47336	[SYN,	ACK] S	Seq=1526	709788	Ack=1	144565408	2	ТСР	74	885-47336 [SYN, ACK] Seq=1526709788 Ack=144565408.
885	TCP	66	47336→885	[ACK]	Seq=14	44565408	32 Ack=1	52670	09789 Win		TCP	66	47336→885 [ACK] Seq=1445654082 Ack=1526709789 Win-
885	TCP	583	47336→885	[PSH,	ACK] S	Seq=1445	654082	Ack=1	152670978	ç	TLSv1	583	Client Hello
47336	TCP	66	885→47336	[ACK]	Seq=1	52670978	39 Ack=1	44565	54599 Win	-	TCP	66	885→47336 [ACK] Seq=1526709789 Ack=1445654599 Win=
47336	TCP	227	885→47336	[PSH,	ACK] S	Seq=1526	5709789	Ack=1	144565459	ç	TLSv1	227	Server Hello, Change Cipher Spec, Encrypted Hands
885	TCP	66	47336→885	[ACK]	Seq=14	44565459	99 Ack=1	52670	09950 Win	•	TCP	66	47336→885 [ACK] Seq=1445654599 Ack=1526709950 Win=
885	TCP	141	47336→885	[PSH,	ACK] S	Seq=1445	654599	Ack=1	152670995		TLSv1	141	Change Cipher Spec, Encrypted Handshake Message
885	TCP	519	47336→885	[PSH,	ACK] S	Seq=1445	654674	Ack=1	152670995		TLSv1	519	Application Data
47336	TCP	66	885→47336	[ACK]	Seq=15	52670995	60 Ack=1	44565	55127 Win		TCP	66	885→47336 [ACK] Seq=1526709950 Ack=1445655127 Win=
47336	TCP	828	885→47336	[PSH,	ACK] S	Seq=1526	5709950	Ack=1	144565512	1	TLSv1	828	Application Data, Application Data
885	TCP	519	47336→885	[PSH,	ACK] S	Seq=1445	655127	Ack=1	152671071	1	TLSv1	519	Application Data
47336	TCP	828	885→47336	[PSH,	ACK] S	Seq=1526	5710712	Ack=1	144565558	¢	TLSv1	828	Application Data, Application Data
885	TCP	66	47336→885	[ACK]	Seq=14	44565558	30 Ack=1	52671	11474 Win	-	TCP	66	47336→885 [ACK] Seq=1445655580 Ack=1526711474 Win=
885	TCP	503	47336→885	[PSH,	ACK] S	Seq=1445	655580	Ack=1	152671147	د	TLSv1	503	Application Data
47336	TCP	828	885→47336	[PSH,	ACK] S	Seq=1526	5711474	Ack=1	144565601	1	TLSv1	828	Application Data, Application Data
885	TCP	66	47336→885	[ACK]	Seq=14	44565601	17 Ack=1	52671	12236 Win	1	TCP	66	6 47336→885 [ACK] Seq=1445656017 Ack=1526712236 Win=

Se deben comparar la captura de la interfaz interna y la captura de la interfaz de túnel. La mejor manera de identificar la sesión en cuestión en ambos archivos PCAP es localizar el puerto de origen único, ya que las direcciones IP son diferentes.

En el ejemplo anterior, observe que falta el paquete hello del servidor en la captura de la interfaz interna. Esto significa que nunca regresó al cliente. Es posible que el paquete haya sido descartado por snort, o posiblemente debido a un defecto o configuración incorrecta.

Nota: Snort inspecciona su propio tráfico de portal cautivo para evitar cualquier ataque HTTP.

Descifrado del flujo cifrado

Si el problema no está en la pila SSL, puede ser beneficioso descifrar los datos en el archivo PCAP para ver la secuencia HTTP. Hay dos métodos para lograrlo.

1. Establecer una variable de entorno en Windows (más seguro - recomendado) Este método implica la creación de un archivo secreto premaestro. Esto se puede hacer con el siguiente comando (ejecutar desde el terminal del comando windows): **setx SSLKEYIOGFILE**

"%HOMEPATH%\Desktop\premaster.txt"Una sesión privada se puede entonces abrir en Firefox, en la que se puede navegar hasta el sitio en cuestión, que utiliza SSL.La clave simétrica se registra luego en el archivo especificado en el comando desde el paso 1 anterior.Wireshark puede utilizar el archivo para descifrar mediante la clave simétrica (consulte el diagrama siguiente).

2. Utilice la clave privada RSA (menos segura, a menos que utilice un certificado de prueba y un usuario) La clave privada que se utilizará es la utilizada para el certificado del portal cautivoEsto no funciona para los que no son de RSA (como la curva elíptica) o para nada efímero (Diffie-Hellman, por ejemplo)

Precaución: Si se utiliza el método 2, no proporcione Cisco Technical Assistance Center (TAC) su clave privada. Sin embargo, se puede utilizar un certificado de prueba temporal y una clave. También se debe utilizar un usuario de prueba en las pruebas.

SSL Decrypt ? X IP address Port Protocol Key File Password 0.0.0.0 885 ssl Z:/Documents/auth.key	Secure Sockets Layer RSA keys list Edit	Preferences > Protocols > SSL	
+ - B G: Users liaroetz AonDaminal Wireshark liss! keys OK Cancel	SSL debug file	Browse	
	Reassemble SSL Application Data Message Authentication Code (N	a spanning multiple SSL records MAC), ignore "mac failed"	
	Pre-Shared-Key (Pre)-Master-Secret log filename C: \Users\myuser\Desktop\prem	aster.txt Browse	—1

Visualización del archivo PCAP descifrado

En el siguiente ejemplo, se descifró un archivo PCAP. Muestra que NTLM se está utilizando como método de autenticación activo.

Después de que se realice la autorización NTLM, el cliente se redirige a la sesión original, de modo que pueda alcanzar su destino previsto, que es <u>http://www.cisco.com</u>.

Pasos de mitigación

Cambiar sólo a autenticación pasiva

Cuando se utiliza en una política de identidad, la autenticación activa tiene la capacidad de descartar tráfico permitido (sólo tráfico HTTP), si algo sale mal en el proceso de redirección. Un paso de mitigación rápido es inhabilitar cualquier regla dentro de la política de identidad con la acción de **Autenticación activa**.

Además, asegúrese de que las reglas con 'Autenticación pasiva' como acción no tengan marcada la opción 'Usar autenticación activa si la autenticación pasiva no puede identificar al usuario'.

Datos que se deben proporcionar al TAC

Datos

Solución de problemas de archivo de Firepower Management Center (FMC) Solución de problemas de archivo del dispositivo Firepower que inspecciona el tráfico Capturas de paquetes de sesión completa

Instrucciones

https://www.cisco.com/c/en/us/support/docs/security/sour cefire-defense-center/117663-technote-SourceFire-00.html

https://www.cisco.com/c/en/us/support/docs/security/sour cefire-defense-center/117663-technote-SourceFire-00.html

Consulte este artículo para obtener instrucciones

Pasos siguientes

Si se ha determinado que el componente de Autenticación activa no es la causa del problema, el siguiente paso sería resolver el problema de la función Política de intrusiones.

Haga clic aquí para continuar con el siguiente artículo.