
Configure Debug Collection for CUBE and TDM
Gateways

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
TDM Voice Gateways versus CUBE
Collection of Cisco IOS/IOS XE Voice Debugs
How to Access a Cisco IOS/IOS XE Router via Command Line Interface (CLI)
How to Set the Terminal Monitor to Collect Show Commands or Debugs
Collect Basic Show Command Output from the CLI
Collect Debug Output from the CLI
Memory Check
Central Processing Unit (CPU) Check
Current Active Calls Check
Logging Buffer Settings
Configure Syslog Settings
Debug Collection
Which Debugs Can be Enabled in Voice Routers
Internal Call Control API (CCAPI) Debug
SIP Call Flows
Basic SIP Debugs
Advanced SIP Debugs
Digital (PRI, BRI) Call Flows
Basic Digital Debug
Advanced Digital Debug
Analog Call Flows
MGCP Call Flows
Basic Debugs
CCM-Manager Debugs
Advanced MGCP Debugs
H323 Call Flows
Basic H323 Debugs
Advanced H323 Debugs
SCCP Media Resources
Basic SCCP Debugs
Advanced SCCP Debug
VoIP Trace
Restrictions
How to Enable VoIP Trace
How to Disable VoIP Trace
Configure Memory Limit
How to Display VoIP Trace Data
Show VoIP Trace All
Show VoIP Trace Cover-Buffers
Show VoIP Trace Call-Id
Show VoIP Trace Statistics

Additional Show Commands

Introduction

This document describes some of the best practices in order to collect Voice Debugs in an Cisco IOS®/IOS
XE® Voice Router.

Prerequisites

Requirements

Basic knowledge in Cisco IOS/IOS XE inside Integrated Services Routers (ISR).•
Privileged Access in order to execute commands in the ISR Routers.•
Prior experience with Voice-over-IP (VoIP) Protocols is desired.•
For VoIP Trace minimum Cisco IOS XE 17.4.1 or 17.3.2 is required.•

Components Used

For the purpose of this document the components used are:

Cisco ISR 3925•
Cisco ISR 4451•
PuTTY•

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, ensure
that you understand the potential impact of any command.

Background Information

The process of Debug collection in these platforms has challenges and could potentially impact the
performance of the device. The challenges and risks increase when there are multiple active calls established
in a Voice Router. In some scenarios, if the debugs are not collected correctly, it can lead to high CPU that
could detriment the capacity of the Router and even cause a software crash. This document talks about the
difference between a Cisco Unified Border Element (CUBE) and a Time-Division Multiplexing
(TDM)/Analog Gateway.

TDM Voice Gateways versus CUBE

TDM Voice gateways are mainly used to interconnect an internal phone system with another Private Branch
Exchange (PBX) or the Public Switched Telephony Network (PSTN). The type of connections that are used
in TDM gateways are T1/E1 Controllers (ISDN or CAS) and Analog circuits such as FXS and FXO ports. A
Digital Signal Processor (DSP) converts the audio from its raw form into RTP packets. In a similar way,
RTP packets get converted to raw audio after the DSP has processed the RTP packets and sends the audio on
the specific circuit. These gateways can interoperate with H323, MGCP or Skinny Call Control Protocol
(SCCP) on the VoIP side, and on the TDM side its either ISDN PRI circuits or Analog as the most common
connections to the PSTN or endpoints.

As shown in the image, the TDM Gateways provide a bridge between your internal VoIP infrastructure and
the Analog or ISDN Service Providers.

With the introduction of VoIP, customers started to rapidly change their legacy systems to a modern VoIP
infrastructure. The same occurred on the Service Provider side, where they now use connections to
interconnect On-Premises Telephony services with the Service Provider VoIP infrastructure and expand
their capabilities in order to provide better services. The most common VoIP protocol used today is the
Session Initiation Protocol (SIP), and is currently widely used by customers and Internet Telephony Service
Providers (ITSP) across the world.

CUBE was introduced to provide a way to internconnect those internal VoIP systems with the external
world through the ITSPs with SIP as the primary VoIP Protocol. CUBE is simply an IP-IP Gateway where it
no longer needs any TDM type of connection like T1/E1 Controllers or analog ports. CUBE runs on the
same platforms as TDM Gateways.

Most common VoIP Protocol used is SIP, for call establishment and teardown of the calls, and RTP for
media transport. In CUBE there is no need of a DSP unless a transcoder is required. The RTP traffic flows
end to end from the ITSP to the endpoint, and CUBE acts as the middle-man with address hiding as one of
the many features it offers.

As shown in the image, CUBE provides a division between your internal VoIP infrastructure and the SIP
ITSP:

Collection of Cisco IOS/IOS XE Voice Debugs

Voice features run on a different list of platforms, like ISR, ASRs, CAT8Ks, amongst others; however, they
use a common software which is either Cisco IOS or Cisco IOS XE (the differences between Cisco IOS and
Cisco IOS XE are not covered in this article). These are the basics on how to access the Cisco IOS Router.

How to Access a Cisco IOS/IOS XE Router via Command Line Interface (CLI)

Routers, like any other CLI based devices, require a terminal monitor to gain access to run the commands
through Secure Shell (SSH) or Telnet. SSH is the most common protocol used nowadays to access the
devices given. It provides a secure and encrypted connection to the device. Some of the common terminal
monitors used to access the CLI of the Routers are:

How to Set the Terminal Monitor to Collect Show Commands or Debugs

There are different ways to collect the output from the CLI. The recommendation is to export the
information from the CLI off the Router to a separate file. This makes it easier in order to share the
information to external parties.

A couple of ways to collect the outputs from the device are:

Dump all the output in the terminal. You need to ensure there are enough lines of scrollback,
otherwise, the scrollback misses the first sections of the output and the data can be incomplete. In
order to increase the scrollback lines in Putty, navigate to Putty Configuration > Window > Lines of
Scrollback. Normally, this is set to a very high value in order to have enough scrollback output:

•

Later, you can collect the information from the terminal monitor with the Copy All to Clipboard option and
paste the output into a text file:

Another option is to log the entire session output to a .txt file. With this option, all commands entered,
and outputs collected, are immediately logged to the text file. This is a common practice in order to
log all output in a Session. In order to log all session output to a file in Putty, navigate to Putty
Configuration > Session > Logging and then select All Session Output as follows:

•

Note: The default log file name is used if no other name is specified. Click the Browse button in order
to know exactly where the file is saved in order to find it later. Also, ensure you do not overwrite
another putty.log file in that same file path.

Collect Basic Show Command Output from the CLI

Show commands are needed to collect basic information from the Router before any debug collection takes
place. Show commands are fast to collect, and for the most part, do not have any impact in performance on
the Router. Isolation of the problem could start immediately with just a show command output.

Once connected to the Router, the terminal length can be set to 0. This can make the collection faster in
order to display all the output at once, and avoid the use of the space bar. The one command that collects
detailed information about the Router is show tech, and alternatively, you can collect show tech voice which
shows data more specific to the voice features enabled in the Router:

<#root>

Router#

terminal length 0

Router#

show tech

!or
Router#

show tech voice

Router#

terminal default length

 !This cmd restores the terminal length to default

Collect Debug Output from the CLI

Debug output collection in Cisco IOS/IOS XE can sometimes be a challenge since there is risk of a Router
crash. Some of the best practices are explained in the next sections to avoid any issues though.

Memory Check

Before you enable any debugs, you need to ensure there is enough memory in order to store the output in the
buffer.

Run the command show process memory to find out how much memory you can allocate in order to log all
output in the buffer:

Tip: Use the command terminal length default or terminal length <num_lines> to go back to a
limited amount of lines displayed in the terminal.

<#root>

Router#

show process memory

Processor Pool Total: 8122836952 Used: 456568400

Free: 7666268552

lsmpi_io Pool Total: 6295128 Used: 6294296 Free: 832

In the example, there is 7666268552 bytes (7.6GB) free to be used by the Router. This memory is shared by
the Router amongst all the System Processes. This means you cannot use the entire free memory to log the
output in the buffer, but you can use a good amount of system memory as needed.

Most of the scenarios require at least 10MB to collect enough debug output before the output is lost or
overwritten. In rare occasions, a larger amount of data is required to be collected. In those specific scenarios,
you can get 50MB to 100MB worth of output in the buffer, or you can go higher as long as there is memory
available.

If the Free Memory is low, then there is potentially a memory leak problem. If this is the case, engage the
Architecture TAC team to revise what could be the cause of such low memory.

Central Processing Unit (CPU) Check

The CPU is affected by the amount of processes, features, and calls active in the system. The more features
or calls active in the system, the busier the CPU.

A good benchmark is to ensure the Router has the CPU at 30% or less, which means you can safely enable
debugs from basic to advanced (always keep an eye on the CPU when advanced debugs are used). If the
Router CPU is at around 50%, then basic debugs can be run, and carefully monitor the CPU. If the CPU
reaches higher than 80%, immediately stop the debugs (shown later in this article) and engage TAC for
assistance.

Use the show process cpu sorted | exclude 0.00 command to check the last 5s, 60s and 5mins CPU values
along with the top Processes.

<#root>

Router#

show processes cpu sorted | exclude 0.00

CPU utilization for

five seconds: 1%/0%; one minute: 0%; five minutes: 0%

PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
211 4852758 228862580 21 0.15% 0.06% 0.07% 0 IPAM Manager
84 3410372 32046994 106 0.07% 0.04% 0.05% 0 IOSD ipc task
202 3856334 114790390 33 0.07% 0.05% 0.05% 0 VRRS Main thread

In the output, the Router does not have much activity, CPU is low, and debugs can safely be enabled.

Caution: Pay extra attention to the top CPU Processes that are active. If the CPU is at 50% or higher,

and the top process is a Voice process only, basic debugs can be enabled. Continuously monitor the
CPU with the command to ensure the overall performance of the Router is not affected.

Current Active Calls Check

Each Router has different capacity thresholds. It is important to check how many calls are active in the
Router to ensure it is not close to max capacity. The Cisco Unified Border Element Version 12 Data Sheet
provides information about each platform capacity for reference.

Use the show call active total-calls command to get an idea on how many calls are active in the system:

<#root>

Router#

show call active total-calls

Total Number of Active Calls : 0

Use the show call active voice summary command to get more detailed information of the specific call
types that are active:

<#root>

Router#

show call active voice summary

Telephony call-legs: 0
SIP call-legs: 0
H323 call-legs: 0
Call agent controlled call-legs: 0
SCCP call-legs: 0
STCAPP call-legs: 0
Multicast call-legs: 0
Total call-legs: 0

Some of the common values are:

Telephony call-legs: TDM Gateway calls, this includes Analog and PRI/ISDN calls.•
SIP call-legs: Total SIP Calls. If this is a CUBE Router, then this shows 2 call legs per call. Divide the
total calls shown here by 2 to get an accurate number.

•

H323 call-legs: Total H323 Calls.•
SCCP call-legs: Cisco Unified Communications Manager (CUCM) Controlled Media Resources used
in the Router such as Transcoder and MTPs.

•

Logging Buffer Settings

To configure the Router to store debug output in the buffer, the configure terminal mode is entered to
manually tweak the settings in the CLI. This configuration has no impact to the Router, however, as shown

https://www.cisco.com/c/en/us/products/collateral/unified-communications/unified-border-element/data-sheet-c78-729692.html

in previous sections, show tech or show running-config command from the Router is needed in the event
the configuration needs to be rolled back.

A configuration example is next, which is a common baseline used by TAC Engineers. The example
allocates a 10MB of buffer memory but it can be increased as needed:

<#root>

configure terminal

service timestamps debug datetime msec localtime show-timezone year

service timestamps log datetime msec localtime show-timezone year

service sequence-numbers

logging buffered 10000000

no logging console

no logging monitor

logging queue-limit 10000

logging rate-limit 10000

voice iec syslog

The commands accomplish these tasks:

service timestamps debug or log: Ensures that local router time is written on every logged message,
with millisecond accuracy. This is useful in order to find calls based on time. Millisecond timestamps
allow you to group debug lines into logical related events when two lines occur within the same
millisecond.

•

service sequence-numbers: Writes the sequence number of the debug in the line. This is useful
(essentially required) when logs are forwarded to a syslog server. This very useful in order to identify
if any debug messages to the syslog server have been dropped in the network. The sequence number is
the first item in the debug, before the timestamp and actual log message. Note that this is different
from the timestamp/sequence number syslog servers can write locally in their files.

•

logging buffer: Tells the Router to send debugs to its local buffer memory. The buffer size is set in
bytes. In the configuration, the buffer size was set to 10MB.

•

no logging console and no logging monitor: No log messages are printed in the console or terminal
monitor. If these commands are not configured, they could be detrimental to the Router performance
and debug output accuracy.

•

voice iec syslog: Enables Voice Internal Error Codes messages to determine disconnect reasons.•

Configure Syslog Settings

Sometimes issues can be random, and require a way to continuously collect debugs until the event happens.
When you store the debugs in the buffer, it collects them continuously. Note that it is limited to the amount
of memory you can allocate and once it reaches that amount of memory, the buffer circles around and drops
the oldest messages, which leads to incomplete valuable information require to isolate the issue.

With Syslog, the Router can send all debug messages out to an external server, where the Syslog Server
software stores it in text files. Although its a good way to collect the debug output, it s not the preferred
method for log collection. Syslog Servers tend to skip or drop lines from the received output due to
congestion in the Server. Since debug output can overwhelm the server, or packets can get dropped due to
network conditions. However, in some scenarios, Syslog is the only way to make progress on an issue.

If possible, use a reliable transport method such as TCP to avoid any loss of information and as a suggestion
connect the Syslog server to the same switch where the Router is connected, or as close as possible to the
Router. It still does not guarantee all data is stored in the files, but reduces the chances of data loss.

By default, syslog servers use UDP as the transport protocol on port 514.

<#root>

#

configure terminal

service timestamps debug datetime msec localtime show-timezone year

service timestamps log datetime msec localtime show-timezone year

service sequence-numbers

!Optional in case you still want to store debug output in the buffer.

logging buffered 10000000

no logging console

no logging monitor

logging trap debugging

!Replace the 192.168.1.2 with the actual Syslog Server IP Address

logging host 192.168.1.2 transport [tcp|udp] port <port>

As soon as the commands are configured, the Router immediately forwards the messages to the Syslog
server IP Address.

Debug Collection

Once the debugs have been enabled, the buffer has to be cleared before the issue is reproduced. This is done
to ensure output is as clean as possible, and avoid any extra data that is not needed for analysis. Run the
command clear log. This ensures that the buffer gets cleared. If there are other calls active in the Router,
and the debugs are enabled, output immediately prints in the buffer.

<#root>

Router#

clear log

Clear logging buffer [confirm]
Router#

After the issue is reproduced, disable the debugs immediately to stop more output in the buffer. Then,
collect the logs. You can dump all the output in the terminal with the commands:

<#root>

Router#

undebug all

Router#

terminal length 0

Router#

show log

Sometimes PuTTY closes since it does not to handle all the output at once. This is normal and it does not
mean a failure has happened. If this happens, reopen the session again, and continue normally. In scenarios
where the logging buffer is too large or the terminal monitor crashes due the amount of data that needs to get
printed, copy the buffer output to an external device directly with the command show log | redirect:

<#root>

Router#

show log | redirect ftp://username:password@192.168.1.2/debugs.txt

The command copies the entire buffer output to a ftp with IP Address 192.168.1.2 with file name debug.txt.
File name has to always be specified. Other destinations available to export that data are:

<#root>

Router#

sh log | redirect ?

bootflash: Uniform Resource Locator
flash: Uniform Resource Locator
ftp: Uniform Resource Locator
harddisk: Uniform Resource Locator
http: Uniform Resource Locator
https: Uniform Resource Locator
nvram: Uniform Resource Locator
tftp: Uniform Resource Locator

Which Debugs Can be Enabled in Voice Routers

Each call flow and type of features (TDM, CUBE or SCCP Media Resources) are different and there are
specific debugs you can enable. All debugs required have to be enabled at the same time. When only one
debug is captured at a time, it is ineffective, and provides more confusion when the data is analyzed.

Debugs are enabled inside the CLI exec prompt level Router# which requires you to have privileged
execution mode permissions.

There are basic and advanced debugs. Basic debugs are used to gather signaling information either in SIP,
H323, or MGCP, which shows the conversations the Router has with its peer devices.

Advanced debugs are very detailed, and are normally used to gather more information in the event of
internal stack errors that the basic debugs cannot show. These debugs are normally CPU intensive.

Tip: After the debugs are enabled, remember to run the command clear logging. This command
ensures the buffer is cleared for a cleaner capture of the debugs.

Internal Call Control API (CCAPI) Debug

Inside each Cisco IOS/IOS XE Router, there is a call control API which is in charge of the communication
between different VoIP applications, or protocols, and the Data Plane components, such as RTP, DSP,
Voice Cards, amongst others. In order to capture data from this layer, there is one specific debug that can be
used:

<#root>

debug voip ccapi inout

There are other options for this debug, however, debug voip ccapi inout covers all basic dial-plan and call
establishment information which is normally more than enough to understand what are the states of this
layer.

Tip: debug voip ccapi inout usually has minimal impact to the CPU of the Router and it is
recommended to enable along with any signaling debugs in order to provide a complete set of logs
with information of the call(s) and its different states.

SIP Call Flows

These debugs are the most commonly used for SIP call flows, and they can be enabled inside CUBE and
TDM Gateways with a SIP Leg between the Router and CUCM or any other SIP Server/Proxy.

Basic SIP Debugs

<#root>

debug ccsip messages

debug ccsip error

debug ccsip non-call

 !Optional, applies for SIP OPTIONS and SIP REGISTER Messages.

Advanced SIP Debugs

<#root>

debug ccsip all

debug ccsip verbose

debug voice ccapi inout

Digital (PRI, BRI) Call Flows

These debugs apply for Primary Rate Interfances (PRI) T1/E1 or Basic Rate Interfaces (BRI):

Basic Digital Debug

<#root>

debug isdn q931

Advanced Digital Debug

<#root>

debug isdn q921

Analog Call Flows

These debugs are used when there are Analog circuits involved like Foreign eXchange Subscriber (FXS) or
Foreign eXchange Office (FXO) ports:

<#root>

debug vpm signal

debug voip vtsp all

MGCP Call Flows

These debugs are used when MGCP is used as the Voice Protocol between a Voice Gateway and CUCM.

Basic Debugs

<#root>

debug mgcp packets

debug mgcp errors

CCM-Manager Debugs

The debugs ccm-manager is used to track the configuration download, and MoH and PRI/BRI backhaul
messages between CUCM and the Voice Gateway. These debugs are used on as needed basis and are
dependent on the failure scenario.

<#root>

debug ccm-manager backhaul

 !For PRI and BRI Deployments

debug ccm-manager errors

debug ccm-manager events

debug ccm-manager config-download

 !Troubleshoot Configuration download issues from CUCM TFTP

debug ccm-mananger music-on-hold

 !Troubleshoot internal MoH Process

Advanced MGCP Debugs

<#root>

debug mgcp all

H323 Call Flows

Although H323 is not widely used, there are still some deployments with H323 configured:

Basic H323 Debugs

<#root>

debug h225 asn1

debug h245 asn1

debug h225 events

debug h245 events

Advanced H323 Debugs

<#root>

debug cch323 h225

debug cch323 h245

debug cch323 all

SCCP Media Resources

These debugs are used to troubleshoot SCCP Media Resources issues which involve Media Termination
Point (MTP) or Transcoders registered to a CUCM server:

Basic SCCP Debugs

<#root>

debug sccp messages

debug sccp events

debug sccp errors

Advanced SCCP Debug

<#root>

debug sccp all

VoIP Trace

With the introduction of Cisco IOS XE 17.4.1 and 17.3.2, there is a new option to capture Voice logs inside
the Cisco Unified Border Element (CUBE). This new feature is called VoIP Trace. This is a new
serviceability framework created to log SIP signaling and events without the need to enable any debugs.

VoIP Trace is enabled by default and can be disabled at any time as needed. VoIP Trace captures specific
information for SIP Calls only:

SIP Messages for SIP Trunk to Trunk calls•
Events and API calls from SIP Layer to other layers in CUBE•
SIP Errors•
Call Control (Unified Communication call flows processed by CUBE)•
Finite State Machines (FSM) states and events•
Dial Peer matched•
RTP ports Allocated•
IEC errors correlation with SIP Signaling•

Restrictions

VoIP Trace does not log information related to Out-of-Dialog SIP Messages:

REGISTER•
OPTIONS•
SUBSCRIBE/NOTIFY•
INFO•

VoIP Trace in HA is supported, however, these caveats apply:

Standby Router has VoIP Trace enabled by default. Only applicable traces for Standby process are
presented until it becomes active.

•

Once Standby is Active, it does NOT contain full traces from checkpointed calls, and only new calls.•
show voip trace <key> still works on the Standby Router and displays cover buffer and media stream
data for calls.

•

How to Enable VoIP Trace

As mentioned, this feature is enabled by default. The command to enable this feature is:

<#root>

Router#

configuration terminal

Router(config)#

voice service voip

Router(conf-voi-serv)#

trace

Router(conf-serv-trace)#

How to Disable VoIP Trace

To disable this feature, the commands are:

<#root>

Router(conf-serv-trace)#

no trace

!or
Router(conf-serv-trace)#

shutdown

Caution: After VoIP Trace is disabled, all memory is cleared and information lost.

The commands available inside the trace configuration mode are:

<#root>

Router(conf-serv-trace)#

?

default Set a command to its defaults
 exit Exit from voice service voip trace mode
 memory-limit Set limit based on memory used
 no Negate a command or set its defaults
 shutdown Shut Voip Trace debugging

Configure Memory Limit

The memory-limit determines how much memory is used by VoIP Trace to store the data. By default, it
is10% of the available memory in the platform, but this can be changed to a max of 1GB and a min of
10MB. The memory is allocated dynamically, which means the feature only uses memory as needed and is
dependent on call volume. Once it reaches the max memory available, it circles around and deletes older
entries.

When the memory limit is modified to be greater than the 10% available memory, a message is shown in the
Command Line Interface:

<#root>

Router(conf-serv-trace)#

memory-limit 1000

Warning: Setting memory limit more than 10% of available platform memory (166 MB) will affect system performance.

To set the default at 10% memory usage, the command memory-limit platform can be used:

<#root>

Router(conf-serv-trace)#

memory-limit platform

 Reducing the memory-limit clears all VoIP Trace statistics and data.
 If you wish to copy this data first, enter 'no' to cancel,
 otherwise enter 'yes' to proceed. Continue? [no]:

Caution: When memory limit is reduced, all VoIP Trace data is lost. A backup of the data has to be
collected before the memory is reduced.

How to Display VoIP Trace Data

To display the data from VoIP Trace, you need to use specific show commands. The data can be displayed
in the same terminal session or could also be sent via Syslog to an off- box syslog server.

Note: Traces are dumped after 32 seconds from the time a BYE is received for a call.

Note: The SIP Signaling is displayed per leg, and is not combined like regular debugs. Regular
debugs like debug ccsip messages, display the SIP signaling of a call in the exact order the events
happened. In VoIP Trace, each leg is separate. To determine the right order, the timestamps are used.

The commands available to show the data are:

<#root>

Router#

show voip trace ?

 all Display all VoIP Traces
 call-id Filter traces based on Internal Call Id
 correlator Filter traces based on FPI Correlator
 cover-buffers Display the summary of all cover buffers
 session-id Filter traces based on SIP Session ID
 sip-call-id Filter traces based on SIP Call Id
 statistics Display statistics for VoIP Trace

 Show VoIP Trace All

This command displays all VoIP Trace data available in the buffer. The use of this command impacts the
performance of the Router. Once the command is entered, a warning message is shown to alert about the
risk, and confirm to continue:

<#root>

Router#

show voip trace all

 Displaying 11858 cover buffers
 This may severely impact system performance.
 Continue? [yes/no] no

Show VoIP Trace Cover-Buffers

This command displays an overview of call details for all calls reported under VoIP Trace. Each call leg has
a cover buffer created which contains a summary of the call logged.

<#root>

Router#

show voip trace cover-buffers

------------------ Cover Buffer ---------------
Search-key = 8845:3002:659
Timestamp = *Sep 30 01:17:33.615
Buffer-Id = 1
CallID = 659
Peer-CallID = 661
Correlator = 4
Called-Number = 3002
Calling-Number = 8845
SIP CallID = 20857880-1ec12085-13b930-411b300a@10.48.27.65
SIP Session ID = 2b1289c400105000a0002c3ecf872659
GUID = 208578800000

------------------ Cover Buffer ---------------
Search-key = 8845:3002:661
Timestamp = *Sep 30 01:17:33.634
Buffer-Id = 2
CallID = 661
Peer-CallID = 659
Correlator = 4
Called-Number = 3002
Calling-Number = 8845
SIP CallID = 8D6DEC28-1F111EB-829FD797-1B22F6DB@10.48.55.11
SIP Session ID = 0927767800105000a0005006ab805584
GUID = 208578800000

For more information about each field, refer to the next table:

Field Description

Search-Key Contains a combination of calling, called number and call-id

Timestamp Creation time of cover buffer

Buffer-ID Buffer ID of the cover buffer

Call-id Call-id of the respective call leg of to the cover buffer

Peer-CallID Call-id of the peer leg

Correlator FPI correlator of the call

Called-number Called number of the respective call-leg of the cover buffer

Calling-number Calling number of the respective call-leg of the cover buffer

Sip Call-ID Sip call-id of the respective call leg of the cover buffer

Sip session ID SIP session id of the respective call leg of the cover buffer

GUID GUID of the respective call of the cover buffer

Anchor Leg Anchor leg is set to yes if the respective call-leg is an anchor leg in the call forking
flow or media proxy deployment

Forked Leg Forked Leg is set to yes if the respective call-leg is an anchor leg in the call forking
flow or media proxy deployment

Associated CalI
IDâ€™s Call-id of the associated forked legs

In order to filter the cover buffers, you can use the include and section commands:

<#root>

Router#

show voip trace cover-buffers | include Search-key | 8845 | 3002

Search-key = 8845:3002:661
!or
Router#

show voip trace cover-buffers | section Search-key | 8845 | 3002

Search-key = 8845:3002:661

Show VoIP Trace Call-Id

In combination with the previous command, show voip trace call-id can be used to find the calls. After the
call-id has been identified, this command can be used to display all the information about the specific call
leg:

<#root>

Router#

show voip trace cover-buffers | include Search-key | 8845 | 3002

Search-key = 8845:3002:661
Router# show voip trace call-id 661

Show VoIP Trace Statistics

This show command displays detailed output about status, memory consumption, erred or failure calls,
successful calls, timestamps of newest and oldest entries and more.

<#root>

Router#

show voip trace statistics

VoIP Trace Statistics
Tracing status : ENABLED at *Sep 12 06:44:02.349
Memory limit configured : 803209216 bytes
Memory consumed : 254550928 bytes (31%)
Total call legs dumped : 2
Oldest trace dumped : *Sep 12 07:29:21.077 Search-key: 9898:30000:64
Latest trace dumped : *Sep 12 07:29:21.010 Search-key: 9898:30000:63
Total call legs captured : 11858
Total call legs available : 11858
Oldest trace available : *Sep 12 06:57:23.923, Search-key: 5250001:4720001:11
Latest trace available : *Sep 13 05:08:25.353, Search-key: 19074502232:30000:13177
Total traces missed : 0

For more information about each field, reference the next table:

Field Description

Tracing Status Displays tracing status, which includes that time and date VoIP trace was enabled.

Memory limit
configured Displays the configured memory limit. This is 10% of the processor pool memory size

Memory
consumed Displays amount of memory dynamically consumed for VoIP Trace

Total call legs
dumped

Displays the number of failed call legs dumped into logging buffer. Dumped calls
refers to call legs associated with IEC errors

Oldest trace
dumped

Displays timestamps and search key of the oldest failed call since VoIP Trace was
enabled

Latest trace
dumped

Displays timestamps and search key of the latest failed call since VoIP Trace was
enabled

Total call legs
captured Displays total legs captured after VoIP Trace is enabled

Total call legs
available

Displays total call legs available in the history. This can be same or different compared
to Total call legs captured, it depends on the memory limit.

Oldest trace
available Displays timestamp and search key of the oldest cover buffer available in the memory

Latest trace
available Displays timestamp and search key of the latest cover buffer available in the memory

Total traces
missed Displays number of call legs missed due to memory limit.

Additional Show Commands

Field Usage Description

show voip trace
correlator
<correlator>

show voip trace correlator 4
Filters and displays VOIP Trace for a specific
call-id starting from the cover buffer

show voip trace
session-id
<session-id>

show voip trace session-id

87003120822b5dbd8fd80f62d8e57c48

Filters and displays VOIP Trace for a call
based on the SIP Session ID. Either local or
remote UUID from the session ID header of
the sip message can be used to display both
the legs of the call.

show voip trace
sip-call-id <call-
id>

show voip trace sip-call-id
01e60dfa9d8442848336d79e3155a8a1

Filters and displays VOIP Trace based on SIP
Call-ID

