

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 15

White Paper

Cloud-Native Network Functions
(CNFs)

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 15

Contents

Introduction .. 3

Primary cloud-native constructs .. 4

Benefits of being cloud native .. 6
Distributed microservices .. 6
Lightweight footprint .. 6
Service discovery .. 6
Lifecycle management .. 6
State separation .. 6
Availability and resiliency .. 7
Operational benefits .. 7
Scalability .. 7

Components technology stack ... 7
Automation and common functions ... 8
Control and user- and data-plane microservices ... 9
Cloud-native services .. 9
Containersss fast networking .. 9

Hybrid world implications and MANO integration .. 12

Cisco CNF implementation examples .. 13
Cloud-native broadband router CNF ... 13
Mobile CNF ... 14

Summary .. 15

More information ... 15

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 15

Introduction

Cloud-native principles and technology have proven to be an effective acceleration technology in building and

continuously operating the largest clouds in the world. This new technology has been selected by Cisco and others

in the industry to develop next-generation Virtual Network Functions (VNFs) called Cloud-Native Network

Functions (CNFs). These CNFs, when running inside telecommunications premises, form a private cloud, and the

same public cloud principles can be effectively used. CNFs cover all branches of the service provider market,

including cable, mobile, video, security, and network infrastructure.

Virtualization and VNFs helped us in getting started in moving toward cloud-native applications. Virtualization,

when done properly, offered software models with increased flexibility with hardware dependencies eliminated.

However, there are limitations in that VNFs upgrades are slow, restarts take a long time, CLI is still the main

interface, software was typically a lift and shift operation, hypervisors such as OpenStack were hard to install, there

was little elasticity, and scaling was problematic.

Cloud-native applications address these limitations. Cloud-native applications in general have these

characteristics:

● Developed using microservices architecture (that is, 12-factor apps)

● Managed by Kubernetes-style orchestration

● Built-in microservice discovery mechanisms

● Supports dynamic elasticity and scale

● Resilient services

● Improved feature velocity

● Smaller footprint with fast restart

● Continuous deployment and automation principles

● Consistent lifecycle management across containers

● Modern health and status telemetry

Cloud Native customer benefits are depicted in the figure below.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 15

● Web scale

◦ Speed: Lego approach to app creation shortens time to market and lets customer control pace of

innovation.

◦ Flexibility: Strong infrastructure offers allow one to focus on app layers, where they create

value/differentiation versus recreating common infrastructure.

◦ Efficiency: Reusable services across teams and business units translate into lower OpEx cost for

developer and customer.

◦ Improved business outcomes: Speed, scale, and agility lead to increased revenue.

● Deployment

◦ Standard DevOps principles and tooling are used to allow for increased feature velocity as well as

consistent deployments.

● Security

◦ Cloud-native tooling for security scans and cloud penetration tests provide increased confidence in the

security of solutions.

◦ Smaller CNFs can independently control subscribers (limit the blast zone) versus the monolithic

box approach.

● Monitoring

◦ Standard tools such as Kubernetes, Prometheus, and Elastic Search provide common health and status

of containers.

The cloud-native approach has been proven at web-scale companies and has shown increased speed, flexibility,

efficiency, and business outcomes as depicted. Teams can now focus more on the business value in the

application versus the infrastructure.

Primary cloud-native constructs

Being cloud native is an approach to building and running applications that fully exploit the advantages of the cloud

model. A cloud-native application utilizes a collection of tools that manage and simplify the orchestration of the

services that make up the application. These services, each with its own lifecycle, are connected by APIs and are

deployed as containers. These containers are orchestrated by a container scheduler, which manages where and

when a container should be provisioned into an application and is responsible for lifecycle management. Cloud-

native applications are designed to be portable to different deployment environments: for example, in a public,

private, or hybrid cloud. Continuous delivery and DevOps are methods used to automate the process of building,

validating, and deploying services into a production network.

Cloud Native constructs are depicted in the figure below.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 15

● Microservices: An architectural style that structures an application as a collection of loosely coupled

services to implement business capabilities. Microservices are commonly deployed in containers and

enable the continuous delivery and deployment of large, complex applications. Each microservice can be

deployed, upgraded, scaled, and restarted independently of other services in the application as part of an

automated system, enabling frequent updates to live applications without affecting end customers.

● Containers: Containers are another form of virtualization, using Operating System (OS)–level virtualization.

A single OS instance is dynamically divided among one or more isolated containers, each with a unique

writable file system and resource quota. Containers can be deployed on both bare metal and virtual

machines. Containers deployed on bare metal offer performance benefits to virtual machines by eliminating

the hypervisor overhead. Although each microservice is commonly deployed in a separate container,

multiple microservices may be deployed per container to address application and performance

requirements, for example, when colocation of services logically simplifies the design or when services fork

multiple processes in a container.

● Continuous delivery: Makes an individual application change ready for release as soon as it is ready,

without waiting for bundling with other changes into a release or an event such as a maintenance window.

Continuous delivery makes releases easy and reliable, so organizations can deliver frequently, at less risk,

and with immediate feedback from end users. The way service providers consume software this frequently

will revolutionize speed to market. Eventually, deployment becomes an integral part of the business process

and enterprise competitiveness, taking advantage of canary and A/B testing in the real world rather than

artificial labs.

● DevOps: DevOps is the utilization of lean and agile techniques to combine development and operations

into a single IT value stream. DevOps enables organizations to build, test, and release software more

rapidly and iteratively by applying continuous integration and delivery. For example, DevOps enables the

automation of deploying and validating a new software feature in an isolated production environment, which

can then be rolled out more broadly into production after it has been proven. To fully realize DevOps,

service providers must adopt cloud-native techniques, establish automated continuous integration, and

deliver pipelines with its vendors. (See Figure 3.)

Service providers are looking to reduce OpEx by automating and simplifying their network operations, allowing for

faster services time to market, and deploying across a broad range of cloud environments. Cloud-native

technologies provide the fundamental building blocks to build applications that achieve these objectives.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 15

Benefits of being cloud native

A cloud-native architecture has many benefits. The following sections capture the primary benefits and best

practices for applying cloud-native principles to CNFs to further define Cisco’s progress and strategy.

Distributed microservices

Expanding on previous discussion, microservices are componentized, reusable software modules enabling a

number of benefits for the customer and the development organization. Microservices expose smaller discrete

functions to an application through APIs. APIs are maintained and versioned and promote reuse of microservices

in other applications. For example, microservices for control plane are used across a number of different

applications. Microservice APIs are typically exposed over a RESTful interface or via a message bus, which allows

each service to choose the best technology available for client operations. For example, Java can be used for a

control-plane service, and Go can be used for data-plane services. This componentization allows open-source

technologies to be more easily integrated into the application or swapped for different technologies as the

application evolves.

Lightweight footprint

Containers are a way of virtualizing an application process or set of processes and are inherently lightweight

because, unlike a virtual machine, the OS is shared across containers. Significant performance improvements can

be realized when starting and upgrading containers during lifecycle operations. Containers may be deployed on

bare metal with a basic Linux OS or can be deployed on virtual machines residing on top of a hypervisor. Although

some of the benefits of containers are limited when running on virtual machines, a majority of the instances do not

require the virtual machine to be upgraded for lifecycle events. For example, upgrading the software containers in a

lifecycle event do not require the virtual machines to be upgraded.

Service discovery

Service discovery is one of the primary components of the cloud-native stack and is used to provide a real-time

service registry for all available services. The service registry enables new services to be dynamically orchestrated

into an application. Services are automatically scaled and recovered via Kubernetes if a service becomes

unavailable and the service must be restored.

Lifecycle management

One of the primary benefits of moving to containerized microservices is the ability to orchestrate the containers so

that separate lifecycle management processes can be applied to each service. This allows for each service to be

versioned and upgraded singularly as opposed to upgrading the entire application or virtual machine image. When

upgrading an application, the container scheduler determines which individual services have changed and deploys

only those specific services into the broader application. When the application is implemented with the appropriate

level of state separation, this process allows for fully automated in-service upgrades and rollback of the containers

that make up the application.

State separation

One of the most commonly agreed-on design patterns in cloud-native applications is a clean separation of stateful

(also known as backing services) and stateless services. Application services containing functional logic (database,

file system, or cache) should be separated from stateful services. For example, a service handling a create session

request implements the logic for creating the session but stores the session information in a separate stateful

service, which physically stores the session to memory or disk. This allows for the stateless application services to

be autonomous, lightweight, upgradable, recoverable, and rapidly scalable.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 15

Stateful services are more challenging because of where and how the state is actually stored: for example, on the

file system, in memory, or in a cloud storage file system. Stateful services must address the availability,

consistency, and portability of state, which typically requires replication across one or more containers while

making sure that consistency of the state is maintained.

Availability and resiliency

Cloud-native applications inherently provide support for high availability and resiliency through service discovery

and load-balancing transactions across stateless application containers. In addition, because containers are

lightweight, recovery times are far less than when recovering a virtual machine, physical box, or application as a

whole. This allows for faster and more granular ways of responding to failure events.

High availability cannot be solved by container orchestration alone, and, in most cases, the application itself has

resiliency requirements. Stateful services, such as a resilient database, require resiliency beyond the inherent

features of a cloud-native architecture, which requires state synchronization and data integrity. Additionally,

protocol services require specific failover and availability mechanisms defined at the protocol level.

Operational benefits

Fundamentally, containerized applications running on bare metal perform better than those running on virtual

machines because there is not the overhead of a hypervisor. Because of the lightweight footprint of containers, the

speed of instantiating or recovering services is optimized. Because virtual machine instantiation includes an

underlying OS and disk resources, the provisioning process can take minutes, whereas a container instantiation

can take seconds. When containers are deployed on top of virtual machines—for example, in a CNF architecture—

and the hypervisor overhead is still present, there are still a number of operational benefits because containers

have a separate lifecycle from virtual machines. For example, a software upgrade or recovery might not require the

instantiation of a new virtual machine. Therefore, because containers are lightweight, the benefits of starting,

recovering, and upgrading services are substantially faster.

Scalability

A containerized architecture enables the ability to scale each microservice independently. Each container is

monitored based on KPI metrics, enabling the orchestration scheduler to scale/descale individual containers. As

new containers are started up for scaling, they register themselves in the service discovery layer and are

automatically orchestrated into the broader application. Load balancing is used to transparently add new container

instances without affecting the containers that depend on that container.

Components technology stack

Figure 4 is a model that Cisco
®
 CNF applications typically follow. Each major area is summarized further in the rest

of this section, starting from the top and working down.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 15

Automation and common functions

Customers expect that Cisco CNFs will behave and operate in a consistent manner across applications, causing

the need for:

● Consistent open framework for cloud-native container management

● Ability to easily deploy and update cloud-native containers from Cisco

● Visibility into container deployments throughout the entire customer’s VNF lifecycle

● Inherent security in deploying Cisco CNF containers in the cloud and on the customer premises

● Standard methodology for CNF deployment across Cisco

● One-click deployment options to make it easy for customers

● Ability to do everything via API

To meet these expectations, Cisco utilizes a common Helm chart format for its container structure. This structure

contains all the deployment information, as well as Kubernetes deployment instructions. By having each container

follow a consistent chart structure, customers can more easily integrate the containers into their cloud-native CD

systems if desired.

For Cisco customers wanting to use Cisco deployment, higher level deployment functionality is provided by a

deployment user interface/API. Cisco is using tools such as Spinnaker, which provides a framework to manage a

distributed deployment at scale with simple operational tooling. Deployment tools such as Spinnaker and Helm

provide benefits, including:

● Multicloud location: Applications can reside in multiple locations, including the private data center and in

the cloud with multiple cloud providers.

● Automated releases: Create deployment pipelines that run integration and systems verifications, spin up

and down containers, and monitor rollouts. Pipelines (that is, workflows) can be triggered from events.

● Ability to build in deployment best practices: Create and deploy immutable images for faster, easier

rollbacks and elimination of hard-to-debug configuration drift issues. Built-in deployment strategies such as

red/black and canary.

● Verification via automation: Included to make sure of a successful deployment.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 15

Control and user- and data-plane microservices

Cisco provides control- and data-plane microservices. These microservices typically communicate via Kafka

messages for control- to data-plane interaction and through specialized interfaces for high-speed data transfer

where latency matters. Microservices from Cisco are used for upstream and downstream data processing as well

as for networking areas such as diameter routing. Configuration is provided via products such as Etcd.

Later sections detail more about control and data planes and cable and mobility use cases.

Cloud-native services

The cloud-native services offered are from a standard Cloud-Native Compute Foundation (CNCF) common stack.

We typically classify the services into the following areas:

● Messaging: Kafka consumers and producers are used.

● Data store: Teams primarily use Mongo or Cassandra as a backing store.

● Security: Vault is used for certificate stores with M-TLS for encryption.

● Logging: Typical ELK stack is used with fluentd.

● Configuration: etcd.

● Health and status: Prometheus in conjunction with Grafana is used.

● Service mesh: Istio.

● Orchestration: Kubernetes and Docker containers.

Containersss fast networking

Basic container networking uses CNI implementations such as Weave, Flannel, Cisco Contiv-VPP, and others.

High-speed data-plane interaction between containers and the external network requires multiple networks to

implement the CNF functionality. Cisco differentiates in this area with its own high-speed data-plane applications:

FD.io and Vector Packet Processing (VPP), for example. Cisco’s approach takes advantage of the low overhead of

containers to deliver higher performance using cloud-native technologies to build the network functions so they run

in the same network and user space as the applications. Network functions become part of the service topology.

Network functions are truly just another service and can be developed and deployed using the same tools as the

applications with the same velocity. Cisco software uses user space versus the kernel providing benefits such as

ease and speed of upgrade, less system call overhead, and decreased dependency on Linux networking.

Technology usage is FD.io (VPP data plane), DPDK (network), and SPDK (storage).

The VPP platform is an extensible framework that provides out-of-the-box production quality switch/router

functionality, which can run on commodity CPUs. The primary benefits of VPP are its high performance, proven

technology, modularity and flexibility, and rich feature set. The framework allows anyone to plug in new graph

nodes without the need to change core or kernel code. VPP supports a cloud-native architecture with its ability to

be orchestrated as a part of a Docker containerized solution. VPP is proven in many networks today and is the

basis for multiple Cisco virtualized network functions.

Additionally, the Cisco data-plane containers use a Go language agent to access VPP. This Go language library

was open-sourced by Cisco via the Ligato program. Ligato (github.com/ligato) provides a mechanism for delivering

and managing agents for cloud-native network functions to enable them to become part of the application service

topology, all in user space.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 15

For integration of CNI interaction and high-speed data-plane interaction, Cisco has developed Contiv integrated

with VPP to abstract container connectivity and networking. Contiv is a user space–based, high-performance, high-

density networking plug-in for Kubernetes, which then uses FD.io/VPP as the industry’s highest performance data

plane. Functionalities included are the allocation of IP addresses to networking-related pods (IPAM) and

programming of the underlying infrastructure it uses (Linux TCP/IP stack, OVS, VPP, and so on) to connect pods to

other pods in the cluster and/or to the external world. It also implements K8s network policies that define which

pods can talk to each other. (See Figure 5.)

Infrastructure

Cisco cloud-native applications operate on bare metal as well as well as in VM-based environments. Cisco offers

the Cisco UCS
®
 bare metal infrastructure as well as cloud management infrastructure provided by the Cisco

Container Platform. Cisco has chosen Kubernetes as its common container orchestration platform. Cisco is

providing a managed Kubernetes service via the Cisco Container Platform to make sure of secure and reliable

platform for CNFs.

The Cisco Container Platform is a fully curated, lightweight container management platform for production-grade

environments, powered by Kubernetes, and delivered with Cisco support. It reduces the complexity of configuring,

deploying, securing, scaling, and managing containers via automation coupled with Cisco’s best practices for

security and networking. The Cisco Container Platform (Figure 6) is built with an open architecture using open-

source components, so you're not locked in to any single vendor. It works across both on-premises and public

cloud environments.

Benefits are:

● The ability to easily manage multiple clusters

● Simple installation and maintenance

● Networking and security consistency

● Transparent application deployment, both on the premises and in public clouds

● Persistent storage

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 15

The Cisco Container Platform will offer support for Kubernetes on bare metal as a service. It will perform the bare

metal hardware bringup, including the installation of the operating system, configuration of the system, and

subsequent deployment of Kubernetes. Additional Kubernetes clusters can be brought up on demand. To support

the hybrid world, OpenStack and VMware will be supported.

The Cisco Container Platform is offering various modes to support cloud native directly as well as the transition

from VMs to containers (hybrid mode) where VMs and containers coexist.

The Cisco Container Platform will support container networking by natively integrating the Contiv-VPP/Ligato work

previously mentioned into the Kubernetes deployment. In this manner, typical CNI-based container networking can

be supported as well as high-speed networking use cases, all controlled by common policies.

Distributed telecommunications cloud requirements

Container-based CNF systems will need to support a distributed telecommunications cloud from the data center to

the edge. The containers will be mapped to the external network via a Contiv-VPP/Ligato framework, which will

support external connectivity requirements to areas such as the DC Interconnect (DCI), virtual routers, and virtual

switches. Cisco is actively working the architecture and technical aspects of fast networking for containers and how

we can make the networking architecture a part of the broader network fabric with service provider WAN. In

addition, interworking with SR-IOV is under discussion as well as container-to-VM-based interworking for CNF/VNF

chaining use cases. This architecture is considering failure domain considerations in the multisite deployment

models as well as connectivity for MPLS/SR to the TOR, MPLS/SR to the host vSwitch, and MPLS/SR to the CNF.

The different areas of the network are important for placement. Figure 7 shows the support of smaller

environments at the edge through the data center with the need for cloud-native techniques across all

environments.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 15

Hybrid world implications and MANO integration

Cloud-first companies will likely use public cloud for new applications when they can but will use private cloud

when they must because of latency requirements and packet rate needs as well as for data sovereignty,

compliance, and other needs. Companies will be in a hybrid cloud mode for some time as they transition. The

customer will have applications spread across public clouds accessed through private connections to the on-

premises systems. Cisco, with its deep networking background, is the right vendor to help one optimize traffic

patterns, secure interactions, reduce costs, and provide flexibility.

In a similar analogy, the hybrid world is driving the need for container-based systems to coexist with VM/bare metal

workloads while using common orchestration. This includes hybrid VM/container systems, which drive VNF/CNF

interworking. Because a majority of service providers are currently deploying NFV cloud solutions based on VNFs

running on virtual machines, Cisco’s cloud-native strategy can be supported on top of virtual machines in an NFV

MANO architecture as previously described and still brings significant advantages because it is using cloud-native

automation techniques. When cloud-native techniques such as dynamic discovery and container scheduling are

integrated into the CNF, this integration dependency is simplified. (See Figure 8.)

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 15

These options will require cloud-native network functions to support a number of deployment pipeline integrations

such as NFV management and organization (MANO), Open Network Automation Platform (ONAP), central office

rearchitected as a data center (CORD), and public and private clouds running on bare metal and virtual machines.

Cloud-native applications support an enhanced level of portability to multiple deployment pipelines with continuous

integration and deployment capabilities required to meet these requirements.

Cisco CNF implementation examples

Cloud-native broadband router CNF

The Cisco cable team is applying cloud-native virtualization to CMTS DOCSIS using cloud-native techniques. This

transformative work enables more effective management and deployment of cable networks. The effort is called

the cloud-native broadband router.

In contrast to hardware-based systems, the new system will separate control and data plan functionality into

microservices that can be separated and eventually run in hybrid clouds. Cable operators and hardware vendors

have recognized the potential of cloud-native virtualization and have produced early stage products that are cloud-

native virtualized CMTS/CCAP systems. The concept is simple. The CMTS/CCAP processing component that

performs the heavy lifting of routing traffic and managing modems is moved into a virtualized environment running

on bare metal or on a virtual machine. The cloud-native CNF is fundamentally then a load-sharing distributed

system. If any component fails, its load can be moved to a different place via Kubernetes orchestration.

Furthermore, scaling up or down can use the same load sharing and distribution system, and in that respect a

failure is simply a case of a “forced scale-down.”

The cloud-native environment for cable includes modern deployment techniques such as one button to click,

canary testing, and red/black testing, allowing for rolling updates to production software. It additionally has

incorporated cloud-native techniques for health and status as well as logging. This breaking of CMTS into a cloud-

native stack increases the reliability, scalability, and feature velocity that have been seen in the web and business

app space to:

● Revolutionize cable-based SW development and operations

● Enable rapid service development and deployment, with in-production testing (CI/CD)

● Enable resilient and elastic resource scaling and continuous service upgrades

● DevOps and automation movement (large scale with low operational overhead)

● Apply relevant app-level concepts to real-time DOCSIS system software

● Expose modern web-native interfaces, where needed, to simplify overall system and take advantage of

modern technologies such as streaming telemetry

● Enable faster time to true DevOps to facilitate operational transformation for cable operators

The architecture abstraction follows. It uses the deep Cisco expertise across important technology areas and

DOCSIS leadership as well as expertise in full cloud-native stacks. It includes VPP for software data-plane

container networking and orchestration and microservices framework and lifecycle management. All these are

made easier to use via the Ligato (ligato.io) infrastructure. (See Figure 9.)

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 14 of 15

Mobile CNF

Service providers are looking to disaggregate the network by moving network functions closer to the edge: Mobile

Edge Computing (MEC). One example of MEC is in a Control User-Plane Separation (CUPS) architecture, where

the user-plane functions of the mobile core are moved to the edge of the network, while the control plane is

deployed centrally. As a result of these use cases, service providers require the flexibility to deploy network

functions in a number of deployment environments. These environments include public, private, and hybrid clouds.

Cloud-native technologies offer a richer set of infrastructure and tools to achieve this level of automation.

The Cisco Ultra Services Platform (USP) provides a common NFV-compliant platform for Cisco mobile core

functions, including user-plane and gateway control-plane functions, along with policy, charging, and subscriber

data management functions. The Cisco USP is evolving to support cloud-native network functions. As part of this

evolution, Cisco VNFs are being decomposed into multiple microservices and deployed as containers, each of

which can then be independently scaled, upgraded, and deployed according to the mobile operator’s business

requirements. USP provides a common cloud-native platform that enables Cisco to deliver its suite of mobile CNFs

as individual applications or as an end-to-end mobile core across a wide range of cloud environments, making sure

of the automation and simplicity required to reduce service provider OpEx and deliver mobility use cases.

The result of this effort is a suite of microservices deployed as Docker containers and integrated with a common

cloud-native management stack, which can be orchestrated as a single CNF or as multiple CNFs running as an

integrated mobile core solution.

Similarly, Cisco’s evolution to being cloud native is also being realized today with the release of Cisco Policy and

Charging Rules Function (PCRF) and Diameter Routing Agent (DRA) applications deployed on a cloud-native

architecture utilizing Docker containers with integrated container orchestration and scheduling; service discovery;

and lifecycle management such as autoscale, upgrade/rollback, and high availability. Mobility data planes are

developed using VPP technology.

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 15 of 15

The figure below abstracts the general mobile CNF architecture.

Summary

Cloud-native principles and technology will help service providers to achieve web scale. Virtualization and VNFs

helped us in getting started in moving toward cloud-native applications, and being cloud native continues this

journey. Service providers must fully automate the deployment and operations of the network. There are specific

considerations to realizing being cloud native in the network that are not inherent to web-based cloud-native

solutions such as user-plane and protocol considerations. Cisco has the underlying technology and experience to

make sure of a smooth transition from VNF to CNF. Cisco’s strategy for being cloud native introduces a new kind

of technology tenants, including microservices, containers, orchestration, continuous integration and deployment,

and DevOps. These tenants and their underlying design constructs and benefits enable the CNF to be fully

automated and operated to maximize automation and orchestration to achieve new revenue opportunities and use

cases. Cisco’s approach to realizing cloud-native application transformation is well under way.

More information

For more information, contact your Cisco sales or product representatives.

Printed in USA C11-740841-00 06/18

